Porous electrospun carbon nano fibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells

被引:28
|
作者
Delikaya, Oeznur [1 ]
Bevilacqua, Nico [2 ]
Eifert, Laszlo [2 ]
Kunz, Ulrike [3 ]
Zeis, Roswitha [2 ,4 ]
Roth, Christina [5 ]
机构
[1] Freie Univ Berlin FUB, Inst Chem & Biochem, Arnimallee 22, D-14195 Berlin, Germany
[2] Helmholtz Inst Ulm HIU, Karlsruhe Inst Technol KIT, Helmholtzstr 11, D-89081 Ulm, Germany
[3] Tech Univ Darmstadt, Inst Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol KIT, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[5] Univ Bayreuth UBT, Electrochem Proc Engn, Univ Str 30, D-95447 Bayreuth, Germany
关键词
Carbon nanofibers; Coaxial electrospinning; Gas diffusion electrode; Gas diffusion layer; High-temperature polymer electrolyte; membrane fuel cell (HT-PEMFCs); RELAXATION-TIMES; HIGH-PERFORMANCE; ANODE MATERIAL; NANOFIBERS; CATALYST; PEMFC; ENCAPSULATION; IMPEDANCE; DEGRADATION; STABILITY;
D O I
10.1016/j.electacta.2020.136192
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) utilize phosphoric acid imbibed polybenzimide membranes, which allow for improved reaction kinetics due to the higher operating temperatures, but suffer from the corrosive environment and the sluggish oxygen transport and associated transport limitations. The latter issue is addressed in this work by the integration of the gas diffusion layer (GDL) into the gas diffusion electrode (GDE) in an entirely electrospun concept. For this purpose, coaxial electrospinning is applied by spinning two immiscible polymer solutions simultaneously to create a core-shell structure. Porous carbon felt structures are obtained due to phase separation in the shell and a subsequent carbonization treatment (integrated GDE@GDL). Full cell tests (0.6 mgPt cm(-2)) demonstrate a 21% increase in the power density normalized to the platinum content compared to the spray-coated reference (1 mgPt cm(-2)). Electrochemical impedance spectroscopy (EIS) measurements coupled with the distribution of relaxation times (DRT) analysis show that the morphology of the GDE@GDL favors oxygen transport inside the electrode. Mass transport limitations were successfully remedied by our electrospun concept rendering an additional GDL sheet obsolete. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Su, Huaneng
    Felix, Cecil
    Barron, Olivia
    Bujlo, Piotr
    Bladergroen, Bernard J.
    Pollet, Bruno G.
    Pasupathi, Sivakumar
    ELECTROCATALYSIS, 2014, 5 (04) : 361 - 371
  • [42] Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells
    Antolini, E
    Passos, RR
    Ticianelli, EA
    JOURNAL OF POWER SOURCES, 2002, 109 (02) : 477 - 482
  • [43] Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments
    Rahim, Yasser
    Janssen, Holger
    Lehnert, Werner
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) : 1189 - 1202
  • [44] Impact of Microporous Layer Roughness on Gas-Diffusion-Electrode-Based Polymer Electrolyte Membrane Fuel Cell Performance
    Wang, Min
    Medina, Samantha
    Pfeilsticker, Jason R.
    Pylypenko, Svitlana
    Ulsh, Michael
    Mauger, Scott A.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (11) : 7757 - 7761
  • [45] The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells
    Holmstrom, N.
    Ihonen, J.
    Lundblad, A.
    Lindbergh, G.
    FUEL CELLS, 2007, 7 (04) : 306 - 313
  • [46] Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells
    Pasaogullari, U
    Wang, CY
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) : A399 - A406
  • [47] Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells
    Yoonho So
    Hongnyoung Yoo
    Jaeyeon Kim
    Obeen Kwon
    Seokhun Jeong
    Heesoo Choi
    Hyeonjin Cha
    Taehyun Park
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1007 - 1014
  • [48] Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells
    So, Yoonho
    Yoo, Hongnyoung
    Kim, Jaeyeon
    Kwon, Obeen
    Jeong, Seokhun
    Choi, Heesoo
    Cha, Hyeonjin
    Park, Taehyun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2023, 10 (04) : 1007 - 1014
  • [49] Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells
    Kannan, Arunachala M.
    Munukutla, Lakshmi
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 330 - 335
  • [50] Effect of the Micro-Porous Layer-Gas Diffusion Layer Interface on Water Transport in Polymer Electrolyte Fuel Cells
    Preston, Joshua
    Fu, Richard
    Zhang, Xiaoyu
    Pasaogullari, Ugur
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 113 - 119