Porous electrospun carbon nano fibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells

被引:28
|
作者
Delikaya, Oeznur [1 ]
Bevilacqua, Nico [2 ]
Eifert, Laszlo [2 ]
Kunz, Ulrike [3 ]
Zeis, Roswitha [2 ,4 ]
Roth, Christina [5 ]
机构
[1] Freie Univ Berlin FUB, Inst Chem & Biochem, Arnimallee 22, D-14195 Berlin, Germany
[2] Helmholtz Inst Ulm HIU, Karlsruhe Inst Technol KIT, Helmholtzstr 11, D-89081 Ulm, Germany
[3] Tech Univ Darmstadt, Inst Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol KIT, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[5] Univ Bayreuth UBT, Electrochem Proc Engn, Univ Str 30, D-95447 Bayreuth, Germany
关键词
Carbon nanofibers; Coaxial electrospinning; Gas diffusion electrode; Gas diffusion layer; High-temperature polymer electrolyte; membrane fuel cell (HT-PEMFCs); RELAXATION-TIMES; HIGH-PERFORMANCE; ANODE MATERIAL; NANOFIBERS; CATALYST; PEMFC; ENCAPSULATION; IMPEDANCE; DEGRADATION; STABILITY;
D O I
10.1016/j.electacta.2020.136192
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) utilize phosphoric acid imbibed polybenzimide membranes, which allow for improved reaction kinetics due to the higher operating temperatures, but suffer from the corrosive environment and the sluggish oxygen transport and associated transport limitations. The latter issue is addressed in this work by the integration of the gas diffusion layer (GDL) into the gas diffusion electrode (GDE) in an entirely electrospun concept. For this purpose, coaxial electrospinning is applied by spinning two immiscible polymer solutions simultaneously to create a core-shell structure. Porous carbon felt structures are obtained due to phase separation in the shell and a subsequent carbonization treatment (integrated GDE@GDL). Full cell tests (0.6 mgPt cm(-2)) demonstrate a 21% increase in the power density normalized to the platinum content compared to the spray-coated reference (1 mgPt cm(-2)). Electrochemical impedance spectroscopy (EIS) measurements coupled with the distribution of relaxation times (DRT) analysis show that the morphology of the GDE@GDL favors oxygen transport inside the electrode. Mass transport limitations were successfully remedied by our electrospun concept rendering an additional GDL sheet obsolete. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network
    Alink, Robert
    Gerteisen, Dietmar
    ENERGIES, 2013, 6 (09): : 4508 - 4530
  • [32] Flexible carbon-cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells
    Kaplan, Begum Yarar
    Sanli, Lale Isikel
    Gursel, Selmiye Alkan
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (09) : 4968 - 4976
  • [33] Lattice Boltzmann Simulation on Water Transport in Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
    Jeon, Dong Hyup
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 22 - 25
  • [34] Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells
    Zamel, Nada
    Li, Xianguo
    Becker, Juergen
    Wiegmann, Andreas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5466 - 5478
  • [35] Performance of Pd Cathode Catalyst Electrodeposited on Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
    Sujin Gok
    Youngkwang Kim
    Taeho Lim
    Hyun-Jong Kim
    Oh Joong Kwon
    Electrocatalysis, 2018, 9 : 59 - 66
  • [36] Performance of Pd Cathode Catalyst Electrodeposited on Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
    Gok, Sujin
    Kim, Youngkwang
    Lim, Taeho
    Kim, Hyun-Jong
    Kwon, Oh Joong
    ELECTROCATALYSIS, 2018, 9 (01) : 59 - 66
  • [37] Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells
    Yu, Junliang
    Froning, Dieter
    Reimer, Uwe
    Lehnert, Werner
    JOURNAL OF POWER SOURCES, 2018, 389 : 56 - 60
  • [38] Effects of gas-diffusion layer properties on the performance of the cathode for high-temperature polymer electrolyte membrane fuel cell
    Chun, Hyunsoo
    Kim, Do-Hyung
    Jung, Hyeon-Seung
    Sim, Jaebong
    Pak, Chanho
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (71) : 27790 - 27804
  • [39] Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell
    Kaushal, Shweta
    Sahu, A. K.
    Rani, Monika
    Dhakate, S. R.
    RENEWABLE ENERGY, 2019, 142 : 604 - 611
  • [40] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Huaneng Su
    Cecil Felix
    Olivia Barron
    Piotr Bujlo
    Bernard J. Bladergroen
    Bruno G. Pollet
    Sivakumar Pasupathi
    Electrocatalysis, 2014, 5 : 361 - 371