Porous electrospun carbon nano fibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells

被引:28
|
作者
Delikaya, Oeznur [1 ]
Bevilacqua, Nico [2 ]
Eifert, Laszlo [2 ]
Kunz, Ulrike [3 ]
Zeis, Roswitha [2 ,4 ]
Roth, Christina [5 ]
机构
[1] Freie Univ Berlin FUB, Inst Chem & Biochem, Arnimallee 22, D-14195 Berlin, Germany
[2] Helmholtz Inst Ulm HIU, Karlsruhe Inst Technol KIT, Helmholtzstr 11, D-89081 Ulm, Germany
[3] Tech Univ Darmstadt, Inst Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol KIT, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[5] Univ Bayreuth UBT, Electrochem Proc Engn, Univ Str 30, D-95447 Bayreuth, Germany
关键词
Carbon nanofibers; Coaxial electrospinning; Gas diffusion electrode; Gas diffusion layer; High-temperature polymer electrolyte; membrane fuel cell (HT-PEMFCs); RELAXATION-TIMES; HIGH-PERFORMANCE; ANODE MATERIAL; NANOFIBERS; CATALYST; PEMFC; ENCAPSULATION; IMPEDANCE; DEGRADATION; STABILITY;
D O I
10.1016/j.electacta.2020.136192
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) utilize phosphoric acid imbibed polybenzimide membranes, which allow for improved reaction kinetics due to the higher operating temperatures, but suffer from the corrosive environment and the sluggish oxygen transport and associated transport limitations. The latter issue is addressed in this work by the integration of the gas diffusion layer (GDL) into the gas diffusion electrode (GDE) in an entirely electrospun concept. For this purpose, coaxial electrospinning is applied by spinning two immiscible polymer solutions simultaneously to create a core-shell structure. Porous carbon felt structures are obtained due to phase separation in the shell and a subsequent carbonization treatment (integrated GDE@GDL). Full cell tests (0.6 mgPt cm(-2)) demonstrate a 21% increase in the power density normalized to the platinum content compared to the spray-coated reference (1 mgPt cm(-2)). Electrochemical impedance spectroscopy (EIS) measurements coupled with the distribution of relaxation times (DRT) analysis show that the morphology of the GDE@GDL favors oxygen transport inside the electrode. Mass transport limitations were successfully remedied by our electrospun concept rendering an additional GDL sheet obsolete. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells
    Felix, Cecil
    Jao, Ting-Chu
    Pasupathi, Sivakumar
    Pollet, Bruno G.
    JOURNAL OF POWER SOURCES, 2013, 243 : 40 - 47
  • [22] Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells
    Gostick, Jeff T.
    Ioannidis, Marios A.
    Fowler, Michael W.
    Pritzker, Mark D.
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 277 - 290
  • [23] Direct growth of carbon nanofibers on carbon-based substrates as integrated gas diffusion and catalyst layer for polymer electrolyte fuel cells
    Salernitano, E.
    Giorgi, L.
    Makris, Th Dikonimos
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) : 15005 - 15016
  • [24] Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells
    Balakrishnan, Manojkumar
    Shrestha, Pranay
    Lee, ChungHyuk
    Ge, Nan
    Fahy, Kieran F.
    Messerschmidt, Matthias
    Scholta, Joachim
    Eifert, Laszlo
    Maibach, Julia
    Zeis, Roswitha
    Hatton, Benjamin D.
    Bazylak, Aimy
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) : 2414 - 2427
  • [25] Effect of Hydrophobic Particles in a Gas Diffusion Electrode on Cell Performance in Polymer Electrolyte Membrane Fuel Cells
    Kim, In-Tae
    Lee, Jae-Young
    Rim, Hyung-Ryul
    Lee, Hong-Ki
    Shim, Joongpyo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 9131 - 9141
  • [26] Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells
    Balakrishnan, Manojkumar
    Shrestha, Pranay
    Lee, Chunghyuk
    Ge, Nan
    Fahy, Kieran F.
    Messerschmidt, Matthias
    Scholta, Joachim
    Eifert, László
    Maibach, Julia
    Zeis, Roswitha
    Hatton, Benjamin D.
    Bazylak, Aimy
    ACS Applied Materials and Interfaces, 2021, 13 (02): : 2414 - 2427
  • [27] Performance Benefits of Multiwall Carbon Nanotubes in the Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layer
    Lee, J.
    Banerjee, R.
    Ge, N.
    Chevalier, S.
    George, M. G.
    Liu, H.
    Shrestha, P.
    Muirhead, D.
    Hinebaugh, J.
    Bazylak, A.
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 237 - 244
  • [28] Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cells
    Bodner, Merit
    Bentzen, Janet Jonna
    Dah, Vedrana Andersen
    Alfaro, Silvia M.
    Steenberg, Thomas
    Hjuler, Hans Aage
    Simonsen, Soren Bredmose
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : F1105 - F1111
  • [29] Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells
    Heinzmann, Marcel
    Weber, Andre
    Ivers-Tiffee, Ellen.
    JOURNAL OF POWER SOURCES, 2019, 444
  • [30] Fuel Electrode Carbon Corrosion in High Temperature Polymer Electrolyte Fuel Cells-Crucial or Irrelevant?
    Engl, Tom
    Gubler, Lorenz
    Schmidt, Thomas J.
    ENERGY TECHNOLOGY, 2016, 4 (01) : 65 - 74