Porous electrospun carbon nano fibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells

被引:28
|
作者
Delikaya, Oeznur [1 ]
Bevilacqua, Nico [2 ]
Eifert, Laszlo [2 ]
Kunz, Ulrike [3 ]
Zeis, Roswitha [2 ,4 ]
Roth, Christina [5 ]
机构
[1] Freie Univ Berlin FUB, Inst Chem & Biochem, Arnimallee 22, D-14195 Berlin, Germany
[2] Helmholtz Inst Ulm HIU, Karlsruhe Inst Technol KIT, Helmholtzstr 11, D-89081 Ulm, Germany
[3] Tech Univ Darmstadt, Inst Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol KIT, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[5] Univ Bayreuth UBT, Electrochem Proc Engn, Univ Str 30, D-95447 Bayreuth, Germany
关键词
Carbon nanofibers; Coaxial electrospinning; Gas diffusion electrode; Gas diffusion layer; High-temperature polymer electrolyte; membrane fuel cell (HT-PEMFCs); RELAXATION-TIMES; HIGH-PERFORMANCE; ANODE MATERIAL; NANOFIBERS; CATALYST; PEMFC; ENCAPSULATION; IMPEDANCE; DEGRADATION; STABILITY;
D O I
10.1016/j.electacta.2020.136192
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) utilize phosphoric acid imbibed polybenzimide membranes, which allow for improved reaction kinetics due to the higher operating temperatures, but suffer from the corrosive environment and the sluggish oxygen transport and associated transport limitations. The latter issue is addressed in this work by the integration of the gas diffusion layer (GDL) into the gas diffusion electrode (GDE) in an entirely electrospun concept. For this purpose, coaxial electrospinning is applied by spinning two immiscible polymer solutions simultaneously to create a core-shell structure. Porous carbon felt structures are obtained due to phase separation in the shell and a subsequent carbonization treatment (integrated GDE@GDL). Full cell tests (0.6 mgPt cm(-2)) demonstrate a 21% increase in the power density normalized to the platinum content compared to the spray-coated reference (1 mgPt cm(-2)). Electrochemical impedance spectroscopy (EIS) measurements coupled with the distribution of relaxation times (DRT) analysis show that the morphology of the GDE@GDL favors oxygen transport inside the electrode. Mass transport limitations were successfully remedied by our electrospun concept rendering an additional GDL sheet obsolete. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell
    Su, Huaneng
    Xu, Qian
    Chong, Junjie
    Li, Huaming
    Sita, Cordellia
    Pasupathi, Sivakumar
    JOURNAL OF POWER SOURCES, 2017, 341 : 302 - 308
  • [2] New Porous Carbon Materials as Gas Diffusion Layer for Polymer Electrolyte Fuel Cells
    Okada, Tatsuhiro
    Kyotani, Mutsumasa
    Yamamoto, Tomoaki
    Terada, Naofumi
    Yoshida, Shin-ichi
    ELECTROCHEMISTRY, 2020, 88 (05) : 423 - 428
  • [3] Experimental study on carbon corrosion of the gas diffusion layer in polymer electrolyte membrane fuel cells
    Ha, Taehun
    Cho, Junhyun
    Park, Jaeman
    Min, Kyoungdoug
    Kim, Han-Sang
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (19) : 12436 - 12443
  • [4] Probing of complex carbon nanofiber paper as gas-diffusion electrode for high temperature polymer electrolyte membrane fuel cell
    Ponomarev, Igor I.
    Skupov, Kirill M.
    Naumkin, Alexander V.
    Basu, Victoria G.
    Zhigalina, Olga M.
    Razorenov, Dmitry Y.
    Ponomarev, Ivan I.
    Volkova, Yulia A.
    RSC ADVANCES, 2019, 9 (01) : 257 - 267
  • [5] Impact of Thickness of Polymer Electrolyte Membrane and Gas Diffusion Layer on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Operated at High Temperature
    Nishimura, Akira
    Kamiya, Satoru
    Okado, Tatsuya
    Yamamoto, Kouhei
    Hirota, Masafumi
    KAGAKU KOGAKU RONBUNSHU, 2019, 45 (06) : 227 - 237
  • [6] Investigating the Impact of Catalyst Penetration into Gas Diffusion Layer on the Performance of High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Chippar, Purushothama
    Babu, Venkatesh K. P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [7] Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells
    Kim, Geon Hwi
    Kim, Dasol
    Kim, Jaeyeon
    Kim, Hyeok
    Park, Taehyun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 : 311 - 316
  • [8] Proton diffusion in the catalytic layer for high temperature polymer electrolyte fuel cells
    Appel, Marina
    Borisov, Galin
    Holderer, Olaf
    Appavou, Marie-Sousai
    Zorn, Reiner
    Lehnert, Werner
    Richter, Dieter
    RSC ADVANCES, 2019, 9 (65) : 37768 - 37777
  • [9] Stochastic Analysis of the Gas Flow at the Gas Diffusion Layer/Electrode Interface of a High-Temperature Polymer Electrolyte Fuel Cell
    Froning, Dieter
    Yu, Junliang
    Reimer, Uwe
    Lehnert, Werner
    TRANSPORT IN POROUS MEDIA, 2018, 123 (02) : 403 - 420
  • [10] Stochastic Analysis of the Gas Flow at the Gas Diffusion Layer/Electrode Interface of a High-Temperature Polymer Electrolyte Fuel Cell
    Dieter Froning
    Junliang Yu
    Uwe Reimer
    Werner Lehnert
    Transport in Porous Media, 2018, 123 : 403 - 420