Linear Instability of Breathers for the Focusing Nonlinear Schrodinger Equation

被引:16
作者
Haragus, Mariana [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST Inst, CNRS, 15b Ave Montboucons, F-25030 Besancon, France
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Breathers; Linear instability; Darboux transformation; Lax spectrum; Zakharov-Shabat spectral problems; ROGUE WAVES; STABILITY; OPTICS;
D O I
10.1007/s00332-022-09819-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relying upon tools from the theory of integrable systems, we discuss the linear instability of the Kuznetsov-Ma breathers and the Akhmediev breathers of the focusing nonlinear Schrodinger equation. We use the Darboux transformation to construct simultaneously the breathers and the exact solutions of the Lax system associated with the breathers. We obtain a full description of the Lax spectra for the two breathers, including multiplicities of eigenvalues. Solutions of the linearized NLS equations are then obtained from the eigenfunctions and generalized eigenfunctions of the Lax system. While we do not attempt to prove completeness of eigenfunctions, we aim to determine the entire set of solutions of the linearized NLS equations generated by the Lax system in appropriate function spaces.
引用
收藏
页数:40
相关论文
共 35 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[3]   Stability and instability of breathers in the U(1) Sasa-Satsuma and nonlinear Schrodinger models* [J].
Alejo, Miguel A. ;
Fanelli, Luca ;
Munoz, Claudio .
NONLINEARITY, 2021, 34 (05) :3429-3484
[4]   Review on the Stability of the Peregrine and Related Breathers [J].
Alejo, Miguel A. ;
Fanelli, Luca ;
Munoz, Claudio .
FRONTIERS IN PHYSICS, 2020, 8 (08)
[5]   The Akhmediev breather is unstable [J].
Alejo, Miguel A. ;
Fanelli, Luca ;
Munoz, Claudio .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02) :391-401
[6]  
[Anonymous], 1999, Nonlinear Schrodinger Equations: Self-Focusing Instability and Wave Collapse
[7]   A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Miller, Peter D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) :1722-1805
[8]   Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions [J].
Biondini, Gino ;
Kovacic, Gregor .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
[9]   Linear instability of the Peregrine breather: Numerical and analytical investigations [J].
Calini, A. ;
Schober, C. M. ;
Strawn, M. .
APPLIED NUMERICAL MATHEMATICS, 2019, 141 :36-43
[10]   Dynamical criteria for rogue waves in nonlinear Schrodinger models [J].
Calini, Annalisa ;
Schober, Constance M. .
NONLINEARITY, 2012, 25 (12) :R99-R116