Analysis of predictive spatio-temporal queries

被引:25
|
作者
Tao, YF
Sun, JM
Papadias, D
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2003年 / 28卷 / 04期
关键词
theory; database; spatio-temporal; selectivity; nearest distance; histogram;
D O I
10.1145/958942.958943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set of objects S, a spatio-temporal window query q retrieves the objects of S that will intersect the window during the (future) interval q(T). A nearest neighbor query q retrieves the objects of S closest to q during q(T). Given a threshold d, a spatio-temporal join retrieves the pairs of objects from two datasets that will come within distance d from each other during q(T). In this article, we present probabilistic cost models that estimate the selectivity of spatio-temporal window queries and joins, and the expected distance between a query and its nearest neighbor(s). Our models capture any query/object mobility combination (moving queries, moving objects or both) and any data type (points and rectangles) in arbitrary dimensionality. In addition, we develop specialized spatio-temporal histograms, which take into account both location and velocity information, and can be incrementally maintained. Extensive performance evaluation verifies that the proposed techniques produce highly accurate estimation on both uniform and non-uniform data.
引用
收藏
页码:295 / 336
页数:42
相关论文
共 50 条
  • [1] Selectivity estimation for predictive spatio-temporal queries
    Tao, YF
    Sun, JM
    Papadias, D
    19TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2003, : 417 - 428
  • [2] Panda∗: A generic and scalable framework for predictive spatio-temporal queries
    Abdeltawab M. Hendawi
    Mohamed Ali
    Mohamed F. Mokbel
    GeoInformatica, 2017, 21 : 175 - 208
  • [3] Spatio-temporal Queries in HBase
    Chen, Xiaoying
    Zhang, Chong
    Ge, Bin
    Xiao, Weidong
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1929 - 1937
  • [4] Panda au: A generic and scalable framework for predictive spatio-temporal queries
    Hendawi, Abdeltawab M.
    Ali, Mohamed
    Mokbel, Mohamed F.
    GEOINFORMATICA, 2017, 21 (02) : 175 - 208
  • [5] A theory of spatio-temporal database queries
    Geerts, F
    Haesevoets, S
    Kuijpers, B
    DATABASE PROGRAMMING LANGUAGES, 2002, 2397 : 198 - 212
  • [6] Models and queries in a spatio-temporal GIS
    El-Geresy, B
    Jones, C
    INNOVATIONS IN GIS: GIS AND GEOCOMPUTATION, 2000, 7 : 27 - 39
  • [7] A Proposal of Spatio-Temporal Pattern Queries
    Gorawski, Marcin
    Jureczek, Pawel
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 587 - 593
  • [8] Convoy queries in spatio-temporal databases
    Jeung, Hoyoung
    Shen, Heng Tao
    Zhou, Xiaofang
    2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 1457 - 1459
  • [9] Spatio-temporal geographical entity and a self-contained frame of spatio-temporal queries
    Wang, XD
    Mao, QZ
    Gong, JW
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1959 - 1961
  • [10] Exploratory Spatio-Temporal Queries in Evolving Information
    Francalanci, Chiara
    Pernici, Barbara
    Scalia, Gabriele
    MOBILITY ANALYTICS FOR SPATIO-TEMPORAL AND SOCIAL DATA, MATES 2017, 2018, 10731 : 138 - 156