Neonatal sleep stage identification using long short-term memory learning system

被引:17
|
作者
Fraiwan, Luay [1 ,2 ]
Alkhodari, Mohanad [1 ]
机构
[1] Abu Dhabi Univ, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
[2] Jordan Univ Sci & Technol, Dept Biomed Engn, Irbid, Jordan
关键词
Neonatal; Sleep stage scoring; Deep learning; Recurrent neural network; Long short-term memory classifier; Training; Classification; AUTOMATED DETECTION; NEURAL-NETWORK; INFANT SLEEP; EEG; DIFFERENTIATION; CLASSIFICATION; PRETERM;
D O I
10.1007/s11517-020-02169-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Neonatal sleep analysis at the neonatal intensive care units (NICU) is critical for the diagnosis of any brain growth risks during the early stages of life. In this paper, an investigation is carried out on the use of a long short-term memory (LSTM) learning system in automatic sleep stage scoring in neonates. The developed algorithm automatically classifies sleep stages based on inputs from a single channel EEG recording. Up to this date, only a single study have developed an approach for automatic sleep stage scoring in neonatal sleep signals using deep neural network (DNN). A total of 5095 sleep stages signals acquired from EEG recordings of the University of Pittsburgh are used in this study. The sleep stages are annotated by a medical doctor from the Pediatric Neurology Department of Case Western Reserve University for three neonatal sleep stages including the awake (W), active sleep (AS), and quiet sleep (QS) stages on every 60-s epoch. The signals are pre-processed through normalization and filtering. The resulted signals are divided following 4-, 6-, and 10-fold cross-validation schemes. The training and classification process is done using a bi-directional LSTM network classifier built with pre-defined training parameters. At the end, the developed algorithm is evaluated along with a complete summary table that reports the results of this study and other state-of-the-art studies. The current study achieved high levels of Cohen's kappa (kappa), accuracy, and F1 score with 91.37%, 96.81%, and 94.43%, respectively. Based on the confusion matrix, the overall true positives percentage reached 95.21%. The developed algorithm gave promising results in automatic sleep stage scoring in neonatal sleep signals. Future work include LSTM architecture and training parameters improvements to enhance the overall accuracy of the classifier.
引用
收藏
页码:1383 / 1391
页数:9
相关论文
共 50 条
  • [31] Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
    Tan, Jen Hong
    Hagiwara, Yuki
    Pang, Winnie
    Lim, Ivy
    Oh, Shu Lih
    Adam, Muhammad
    Tan, Ru San
    Chen, Ming
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 94 : 19 - 26
  • [32] Person identification using electrocardiogram and deep long short term memory
    Gupta P.K.
    Avasthi V.
    International Journal of Information Technology, 2023, 15 (3) : 1709 - 1717
  • [33] Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
    Skrobek, Dorian
    Krzywanski, Jaroslaw
    Sosnowski, Marcin
    Kulakowska, Anna
    Zylka, Anna
    Grabowska, Karolina
    Ciesielska, Katarzyna
    Nowak, Wojciech
    ENERGIES, 2020, 13 (24)
  • [34] Multi-Scale Remaining Useful Life Prediction Using Long Short-Term Memory
    Wang, Youdao
    Zhao, Yifan
    SUSTAINABILITY, 2022, 14 (23)
  • [35] Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network
    Rodrigues Junior, Wilson Leal
    Silva Borges, Fabbio Anderson
    Lira Rabelo, Ricardo de A.
    Alves de Lima, Bruno Vicente
    Almeida de Alencar, Jose Eduardo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [36] Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain-Computer Interface
    Asgher, Umer
    Khalil, Khurram
    Khan, Muhammad Jawad
    Ahmad, Riaz
    Butt, Shahid Ikramullah
    Ayaz, Yasar
    Naseer, Noman
    Nazir, Salman
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [37] Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network
    Long, Xiaoxu
    Wang, Jiandong
    Gong, Shihong
    Li, Guangyong
    Ju, Hui
    IRRIGATION AND DRAINAGE, 2022, 71 (04) : 855 - 881
  • [38] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [39] Detection of Epileptic Seizures via Deep Long Short-Term Memory
    Patan, Krzysztof
    Rutkowski, Grzegorz
    CURRENT TRENDS IN BIOMEDICAL ENGINEERING AND BIOIMAGES ANALYSIS, 2020, 1033 : 166 - 178
  • [40] QUANTUM LONG SHORT-TERM MEMORY
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Fang, Yao-Lung L.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8622 - 8626