An efficient numerical method for computing dynamics of spin F=2 Bose-Einstein condensates

被引:15
作者
Wang, Hanquan [1 ,2 ]
机构
[1] Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Yunnan, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
Gross-Pitaevskii equations; Spin F=2 BEC; Time-splitting; Fourier pseudospectral method; Numerical simulation; Quantized vortices; GROSS-PITAEVSKII EQUATION; SPLITTING SPECTRAL METHOD; GROUND-STATE;
D O I
10.1016/j.jcp.2011.04.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we extend the efficient time-splitting Fourier pseudospectral method to solve the generalized Gross-Pitaevskii (GP) equations, which model the dynamics of spin F = 2 Bose-Einstein condensates at extremely low temperature. Using the time-splitting technique, we split the generalized GP equations into one linear part and two nonlinear parts: the linear part is solved with the Fourier pseudospectral method; one of nonlinear parts is solved analytically while the other one is reformulated into a matrix formulation and solved by diagonalization. We show that the method keeps well the conservation laws related to generalized GP equations in 1D and 2D. We also show that the method is of second-order in time and spectrally accurate in space through a one-dimensional numerical test. We apply the method to investigate the dynamics of spin F = 2 Bose-Einstein condensates confined in a uniform/nonuniform magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:6155 / 6168
页数:14
相关论文
共 43 条
  • [1] Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow
    Bao, Weizhu
    Lim, Fong Yin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) : 1925 - 1948
  • [2] A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates
    Bao, Weizhu
    Wang, Hanquan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 2177 - 2200
  • [3] An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates
    Bao, Weizhu
    Wang, Hanquan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) : 612 - 626
  • [4] Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation
    Bao, WZ
    Du, Q
    Zhang, YZ
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) : 758 - 786
  • [5] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [6] On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime
    Bao, WZ
    Jin, S
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 487 - 524
  • [7] Vortex lattice transitions in cyclic spinor condensates
    Barnett, Ryan
    Mukerjee, Subroto
    Moore, Joel E.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [8] Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates
    Cerimele, MM
    Chiofalo, ML
    Pistella, F
    Succi, S
    Tosi, MP
    [J]. PHYSICAL REVIEW E, 2000, 62 (01): : 1382 - 1389
  • [9] Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates -: art. no. 140403
    Chang, MS
    Hamley, CD
    Barrett, MD
    Sauer, JA
    Fortier, KM
    Zhang, W
    You, L
    Chapman, MS
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (14) : 140403 - 1
  • [10] Phase diagrams of F=2 spinor Bose-Einstein condensates -: art. no. 033607
    Ciobanu, CV
    Yip, SK
    Ho, TL
    [J]. PHYSICAL REVIEW A, 2000, 61 (03) : 5 - 336075