Customer churn prediction in telecommunication industry using data certainty

被引:111
|
作者
Amin, Adnan [1 ]
Al-Obeidat, Feras [2 ]
Shah, Babar [2 ]
Adnan, Awais [1 ]
Loo, Jonathan [3 ]
Anwar, Sajid [1 ]
机构
[1] Inst Management Sci, Ctr Excellence Informat Technol, Peshawar 25000, Pakistan
[2] Zayed Univ, Coll Technol Innovat, Abu Dhabi 144534, U Arab Emirates
[3] Univ West London, Comp & Commun Engn, London, England
关键词
Churn prediction; Uncertain samples; Classification; Telecommunication; Customer churn; SUPPORT VECTOR MACHINES; CLASS IMBALANCE PROBLEM; ALGORITHM;
D O I
10.1016/j.jbusres.2018.03.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
Customer Churn Prediction (CCP) is a challenging activity for decision makers and machine learning community because most of the time, churn and non-churn customers have resembling features. From different experiments on customer churn and related data, it can be seen that a classifier shows different accuracy levels for different zones of a dataset. In such situations, a correlation can easily be observed in the level of classifier's accuracy and certainty of its prediction. If a mechanism can be defined to estimate the classifier's certainty for different zones within the data, then the expected classifier's accuracy can be estimated even before the classification. In this paper, a novel CCP approach is presented based on the above concept of classifier's certainty estimation using distance factor. The dataset is grouped into different zones based on the distance factor which are then divided into two categories as; (i) data with high certainty, and (ii) data with low certainty, for predicting customers exhibiting Churn and Non-churn behavior. Using different state-of-the-art evaluation measures (e.g., accuracy, f-measure, precision and recall) on different publicly available the Telecommunication Industry (TCI) datasets show that (i) the distance factor is strongly co-related with the certainty of the classifier, and (ii) the classifier obtained high accuracy in the zone with greater distance factor's value (i.e., customer churn and non-churn with high certainty) than those placed in the zone with smaller distance factor's value (i.e., customer chum and non-churn with low certainty).
引用
收藏
页码:290 / 301
页数:12
相关论文
共 50 条
  • [41] Churn Prediction in Telecom Using the Customer churn warning
    Zhang, Limei
    2012 7TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2012, : 587 - 590
  • [42] Particle classification optimization-based BP network for telecommunication customer churn prediction
    Yu, Ruiyun
    An, Xuanmiao
    Jin, Bo
    Shi, Jia
    Move, Oguti Ann
    Liu, Yonghe
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (03) : 707 - 720
  • [43] A Rule-Based Method for Customer Churn Prediction in Telecommunication Services
    Huang, Ying
    Huang, Bingquan
    Kechadi, M. -T.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 411 - 422
  • [44] An ensemble based approach using a combination of clustering and classification algorithms to enhance customer churn prediction in telecom industry
    Bilal, Syed Fakhar
    Almazroi, Abdulwahab Ali
    Bashir, Saba
    Khan, Farhan Hassan
    Almazroi, Abdulaleem Ali
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [45] Customer Churn Reasoning in Telecommunication Domain
    Stehani, S.
    Karunya, N.
    Ranjan, D. R. J. B.
    Sumathipala, Sagara
    Sandanayake, T. C.
    2020 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB 2020, 2020,
  • [46] Customer churn analysis in telecommunication sector
    Gursoy, Umman Tugba Simsek
    ISTANBUL UNIVERSITY JOURNAL OF THE SCHOOL OF BUSINESS, 2010, 39 (01): : 35 - 49
  • [47] Improving Customer Churn Prediction by Data Augmentation Using Pictorial Stimulus-Choice Data
    Ballings, Michel
    Van den Poel, Dirk
    Verhagen, Emmanuel
    MANAGEMENT INTELLIGENT SYSTEMS, 2012, 171 : 217 - +
  • [48] Attribute Selection and Customer Churn Prediction in Telecom Industry
    Umayaparvathi, V.
    Iyakutti, K.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), 2016, : 84 - 90
  • [49] Improved churn prediction in telecommunication industry by analyzing a large network
    Kim, Kyoungok
    Jun, Chi-Hyuk
    Lee, Jaewook
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (15) : 6575 - 6584
  • [50] Customer churn prediction in telecommunications
    Huang, Bingquan
    Kechadi, Mohand Tahar
    Buckley, Brian
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 1414 - 1425