Customer churn prediction in telecommunication industry using data certainty

被引:111
|
作者
Amin, Adnan [1 ]
Al-Obeidat, Feras [2 ]
Shah, Babar [2 ]
Adnan, Awais [1 ]
Loo, Jonathan [3 ]
Anwar, Sajid [1 ]
机构
[1] Inst Management Sci, Ctr Excellence Informat Technol, Peshawar 25000, Pakistan
[2] Zayed Univ, Coll Technol Innovat, Abu Dhabi 144534, U Arab Emirates
[3] Univ West London, Comp & Commun Engn, London, England
关键词
Churn prediction; Uncertain samples; Classification; Telecommunication; Customer churn; SUPPORT VECTOR MACHINES; CLASS IMBALANCE PROBLEM; ALGORITHM;
D O I
10.1016/j.jbusres.2018.03.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
Customer Churn Prediction (CCP) is a challenging activity for decision makers and machine learning community because most of the time, churn and non-churn customers have resembling features. From different experiments on customer churn and related data, it can be seen that a classifier shows different accuracy levels for different zones of a dataset. In such situations, a correlation can easily be observed in the level of classifier's accuracy and certainty of its prediction. If a mechanism can be defined to estimate the classifier's certainty for different zones within the data, then the expected classifier's accuracy can be estimated even before the classification. In this paper, a novel CCP approach is presented based on the above concept of classifier's certainty estimation using distance factor. The dataset is grouped into different zones based on the distance factor which are then divided into two categories as; (i) data with high certainty, and (ii) data with low certainty, for predicting customers exhibiting Churn and Non-churn behavior. Using different state-of-the-art evaluation measures (e.g., accuracy, f-measure, precision and recall) on different publicly available the Telecommunication Industry (TCI) datasets show that (i) the distance factor is strongly co-related with the certainty of the classifier, and (ii) the classifier obtained high accuracy in the zone with greater distance factor's value (i.e., customer churn and non-churn with high certainty) than those placed in the zone with smaller distance factor's value (i.e., customer chum and non-churn with low certainty).
引用
收藏
页码:290 / 301
页数:12
相关论文
共 50 条
  • [41] Predicting Customer Churn in the Telecom Industry Using Data Analytics
    Preetha, S.
    Rayapeddi, Rohit
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 38 - 43
  • [42] Development of Churn Prediction Model using XGBoost - Telecommunication Industry in Sri Lanka
    Senthan, Prasanth
    Rathnayaka, Rmkt
    Kuhaneswaran, Banujan
    Kumara, Btgs
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 520 - 526
  • [43] Churn Prediction in Telecom Using the Customer churn warning
    Zhang, Limei
    2012 7TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2012, : 587 - 590
  • [44] Customer Churn Prediction Model using Data Mining techniques
    Mitkees, Ibrahim M. M.
    Badr, Sherif M.
    ElSeddawy, Ahmed Ibrahim Bahgat
    2017 13TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2017, : 262 - 268
  • [45] A Rule-Based Method for Customer Churn Prediction in Telecommunication Services
    Huang, Ying
    Huang, Bingquan
    Kechadi, M. -T.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 411 - 422
  • [46] Study of machine learning methods for customer churn prediction in telecommunication company
    Sniegula, Anna
    Poniszewska-Maranda, Aneta
    Popovic, Milan
    IIWAS2019: THE 21ST INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES, 2019, : 640 - 644
  • [47] Customer Churn Reasoning in Telecommunication Domain
    Stehani, S.
    Karunya, N.
    Ranjan, D. R. J. B.
    Sumathipala, Sagara
    Sandanayake, T. C.
    2020 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB 2020, 2020,
  • [48] Customer churn analysis in telecommunication sector
    Gursoy, Umman Tugba Simsek
    ISTANBUL UNIVERSITY JOURNAL OF THE SCHOOL OF BUSINESS, 2010, 39 (01): : 35 - 49
  • [49] A genetic programming based framework for churn prediction in telecommunication industry
    Faris, Hossam
    Al-Shboul, Bashar
    Ghatasheh, Nazeeh
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8733 : 353 - 362
  • [50] Improved churn prediction in telecommunication industry by analyzing a large network
    Kim, Kyoungok
    Jun, Chi-Hyuk
    Lee, Jaewook
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (15) : 6575 - 6584