Efimov Effect for a Three-Particle System with Two Identical Fermions

被引:9
|
作者
Basti, Giulia [1 ]
Teta, Alessandro [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
来源
ANNALES HENRI POINCARE | 2017年 / 18卷 / 12期
关键词
3-BODY SCHRODINGER-OPERATORS; BOUND-STATES; PARTICLES; ASYMPTOTICS; NUMBER;
D O I
10.1007/s00023-017-0608-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a three-particle quantum system in dimension three composed of two identical fermions of mass one and a different particle of mass m. The particles interact via two-body short range potentials. We assume that the Hamiltonians of all the two-particle subsystems do not have bound states with negative energy and, moreover, that the Hamiltonians of the two subsystems made of a fermion and the different particle have a zero-energy resonance. Under these conditions and for , we give a rigorous proof of the occurrence of the Efimov effect, i.e., the existence of infinitely many negative eigenvalues for the three-particle Hamiltonian H. More precisely, we prove that for the number of negative eigenvalues of H is finite and for the number N(z) of negative eigenvalues of H below has the asymptotic behavior for . Moreover, we give an upper and a lower bound for the positive constant .
引用
收藏
页码:3975 / 4003
页数:29
相关论文
共 50 条
  • [21] Dispersive approaches for three-particle final state interaction
    Guo, Peng
    Danilkin, I. V.
    Szczepaniak, Adam P.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (11) : 1 - 10
  • [22] Number of Eigenvalues of the Three-Particle Schrodinger Operators on Lattices
    Albeverio, S.
    Lakaev, S. N.
    Khalkhujaev, A. M.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (03) : 387 - 420
  • [23] On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator
    Abdullaev, J. I.
    Boymurodov, J. K.
    Khalkhuzhaev, A. M.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 645 - 658
  • [24] Relativistic, model-independent, three-particle quantization condition
    Hansen, Maxwell T.
    Sharpe, Stephen R.
    PHYSICAL REVIEW D, 2014, 90 (11):
  • [25] Essential and discrete spectra of the three-particle Schrodinger operator on a lattice
    Eshkabilov, Yu Kh
    Kucharov, R. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) : 341 - 353
  • [26] The asymptotics of the number of eigenvalues of a three-particle lattice Schrodinger operator
    Lakaev, SN
    Muminov, ZI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2003, 37 (03) : 228 - 231
  • [27] Hydrodynamic correlations in three-particle colloidal systems in harmonic traps
    Herrera-Velarde, Salvador
    Euan-Diaz, Edith C.
    Cordoba-Valdes, Fidel
    Castaneda-Priego, Ramon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (32)
  • [28] Formula for the number of eigenvalues of a three-particle Schrodinger operator on a lattice
    Muminov, M. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (01) : 869 - 882
  • [29] Fractionation of a Three-Particle Mixture by Brownian Sieving Hydrodynamic Chromatography
    Biagioni, Valentina
    Venditti, Claudia
    Adrover, Alessandra
    Cerbelli, Stefano
    CHEMICAL ENGINEERING & TECHNOLOGY, 2023, 46 (06) : 1228 - 1234
  • [30] Conditions for the Existence of Eigenvalues of a Three-Particle Lattice Model Hamiltonian
    Bahronov, B. I.
    Rasulov, T. H.
    Rehman, M.
    RUSSIAN MATHEMATICS, 2023, 67 (07) : 1 - 8