Equilibrated residual error estimator for edge elements

被引:0
|
作者
Braess, Dietrich [1 ]
Schoeberl, Joachim [2 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[2] Univ Aachen, Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany
关键词
a posteriori error estimates; Maxwell equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reliable a posteriori error estimates without generic constants can be obtained by a comparison of the finite element solution with a feasible function for the dual problem. A cheap computation of such functions via equilibration is well known for scalar equations of second order. We simplify and modify the equilibration such that it can be applied to the curl-curl equation and edge elements. The construction is more involved for edge elements since the equilibration has to be performed on subsets with different dimensions. For this reason, Raviart-Thomas elements are extended in the spirit of distributions.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 50 条
  • [21] A ROBUST RESIDUAL FREQUENCY ERROR ESTIMATOR FOR UWB APPLICATION
    Kim, D. -H.
    You, Y. -H.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2008, 22 (11-12) : 1671 - 1681
  • [22] Note on the use of residual as an error estimator for Hammerstein equations
    Kaneko, H.
    Noren, R.D.
    Boundary elements communications, 1999, 10 (03): : 7 - 10
  • [23] Tangential residual as error estimator in the boundary element method
    Martínez-Castro, AE
    Gallego, R
    COMPUTERS & STRUCTURES, 2005, 83 (10-11) : 685 - 699
  • [24] A RESIDUAL A POSTERIORI ERROR ESTIMATOR ELASTO-VASCOPLASTICITY
    Fernandez, Jose R.
    Hild, Patrick
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (04) : 603 - 614
  • [25] Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes
    Ainsworth, Mark
    Demkowicz, Leszek
    Kim, Chang-Wan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3493 - 3507
  • [26] Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (12) : 5715 - 5723
  • [27] Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems
    Difeng Cai
    Zhiqiang Cai
    Shun Zhang
    Numerische Mathematik, 2020, 144 : 1 - 21
  • [28] Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems
    Cai, Difeng
    Cai, Zhiqiang
    Zhang, Shun
    NUMERISCHE MATHEMATIK, 2020, 144 (01) : 1 - 21
  • [29] Probabilistic analysis of an a posteriori error estimator for finite elements
    Díez, P
    Egozcue, JJ
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (05): : 841 - 854
  • [30] A residual based error estimator for the Mimetic Finite Difference method
    L. Beirão da Veiga
    Numerische Mathematik, 2008, 108 : 387 - 406