High-performance thermal capacitors made by explosion forming

被引:15
作者
Fiedler, T. [1 ]
Borovinsek, M. [2 ]
Hokamoto, K. [3 ]
Vesenjak, M. [2 ]
机构
[1] Univ Newcastle, Sch Engn, Callaghan, NSW 2287, Australia
[2] Univ Maribor, Fac Mech Engn, Maribor 2000, Slovenia
[3] Kumamoto Univ, Inst Pulsed Power Sci, Chuo Ku, Kumamoto 8608555, Japan
基金
澳大利亚研究理事会;
关键词
Thermal capacitor; Cellular metal; Phase change material; Experimental analysis; Finite element method; ENERGY STORAGE TECHNOLOGIES; PHASE-CHANGE MATERIALS; HEAT SINK; CONDUCTIVITY; COMPOSITES;
D O I
10.1016/j.ijheatmasstransfer.2014.12.025
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper addresses the thermal testing of UniPore-paraffin composites for use as thermal capacitors. UniPore is a relatively new porous material with unidirectional pores formed by the explosive fusion of multiple thin copper pipes filled with paraffin. The current study investigates the suitability of this composite for transient thermal energy storage. The application demands both high thermal diffusivity and a large specific energy storage capacity. These requirements are met by the highly conductive copper and the phase change material paraffin, respectively. Combined experimental and numerical analyses are conducted towards the determination of temperature stabilization performance. Furthermore, key geometric criteria for the design of optimum UniPore structures as thermal capacitors are identified. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 371
页数:6
相关论文
共 50 条
  • [21] High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites
    Pan, Zhongbin
    Yao, Lingmin
    Ge, Guanglong
    Shen, Bo
    Zhai, Jiwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14614 - 14622
  • [22] Properties and Microstructure Distribution of High-Performance Thermal Insulation Concrete
    Mohammad, Malek
    Masad, Eyad
    Seers, Thomas
    Al-Ghamdi, Sami G.
    MATERIALS, 2020, 13 (09)
  • [23] π-π interactions enable in-situ exfoliation of BN nanoflakes for high-performance thermal interface materials
    Sheng, Mingming
    Lu, Junbin
    Gong, Hongyu
    Yu, Jincheng
    Bi, Jianqiang
    Zhang, Weibin
    Chen, Guowen
    Li, Jianxin
    Jing, Jie
    Zhang, Yujun
    JOURNAL OF MATERIOMICS, 2025, 11 (05)
  • [24] High-Performance Thermal Management Nanocomposites: Silver Functionalized Graphene Nanosheets and Multiwalled Carbon Nanotube
    Zhou, Yongcun
    Zhuang, Xiao
    Wu, Feixiang
    Liu, Feng
    CRYSTALS, 2018, 8 (11):
  • [25] High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams
    Fu, Huaqiang
    Fang, Renqiang
    Tian, Chao
    Qian, Wei
    Cao, Shiya
    Zhang, Ziran
    Xu, Xiaoxi
    Yao, Chuang
    Wang, Zhe
    He, Daping
    NANO RESEARCH, 2024, 17 (11) : 9293 - 9299
  • [26] An electrode for a high-performance asymmetric supercapacitor made of rGO/PANI/PB ternary nanocomposite
    Mohamed, H. M.
    Abo-Aly, M. M.
    Wahab, S. M. Abdel
    Mousa, M. A.
    Ali, Asmaa A. I.
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [27] High-performance transparent actuator made from Poly(dimethylsiloxane)/Ionic liquid gel
    Terasawa, Naohiro
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 : 815 - 819
  • [28] Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management
    Li, Junwei
    Ye, Zhenqiang
    Mo, Pingjing
    Pang, Yunsong
    Gao, Enze
    Zhang, Chenxu
    Du, Guoping
    Sun, Rong
    Zeng, Xiaoliang
    COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 234
  • [29] High-performance capacitors based on in situ Ni-doped CoMoO4@CNTs composites
    Li, Mingwei
    Zou, Yuhan
    Zhang, Hongxun
    Yang, Fang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 986
  • [30] Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors
    Ding, Yongqiang
    Yang, Bingjun
    Chen, Jiangtao
    Zhang, Li
    Li, Junshuai
    Li, Yali
    Yan, Xingbin
    SCIENCE CHINA-MATERIALS, 2018, 61 (02) : 285 - 295