Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester

被引:85
|
作者
Karami, M. Amin [1 ]
Inman, Daniel J. [2 ]
机构
[1] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Mech Engn, Ctr Intelligent Mat Syst & Struct, Blacksburg, VA 24061 USA
关键词
energy harvesting; MEMS; low frequency; electromechanical modeling; piezoelectric; PIEZOELECTRIC POWER GENERATOR; CERAMICS;
D O I
10.1177/1045389X11398164
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytical electromechanical model is proposed to predict the deflection, voltage, and the power output of a proposed low-frequency micro-harvesting structure. The high natural frequencies of the existing designs of micro-scale vibrational energy harvesters are serious drawbacks. A zigzag design is proposed to overcome this limitation. First, the natural frequencies and the mode shapes of the zigzag structure are calculated. The piezoelectric direct and reverse effect equations, together with the electrical equations, are used to relate the voltage output of the structure to the base vibrations magnitude and frequency. The closed-form solution of the continuous electromechanical vibrations gives the power output as a function of base acceleration spectrum. The usefulness of the design is proved by the significant increase of the power output from the same base accelerations, providing a method of designing a micro-scale harvester with low natural frequency. The optimal mechanical and electrical conditions for power generation are investigated through the case studies.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [1] ELECTROMECHANICAL MODELING OF THE LOW FREQUENCY MEMS ENERGY HARVESTER
    Karami, M. Amin
    Inman, Daniel J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A AND B, 2010, : 523 - 530
  • [2] Electromechanical finite element analysis for designed low-frequency MEMS piezoelectric vibration energy harvester
    Xu, Ling
    Zhou, Shengrui
    Xiang, Yingfei
    Yang, Yinglin
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 2112 - 2117
  • [3] A low-frequency vibration-to-electrical energy harvester
    Zhang, Min
    Brignac, Daniel
    Ajmera, Pratul
    Lian, Kun
    NANOSENSORS AND MICROSENSORS FOR BIO-SYSTEMS 2008, 2008, 6931
  • [4] Double Impact-Based Piezoelectric Energy Harvester for Low-Frequency Operation
    Machado, Sebastian Pablo
    Febbo, Mariano
    Osinaga, Santiago Manuel
    IEEE SENSORS JOURNAL, 2023, 23 (02) : 1081 - 1090
  • [5] An efficient low-frequency acoustic energy harvester
    Yuan, Ming
    Cao, Ziping
    Luo, Jun
    Zhang, Jinya
    Chang, Cheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 264 : 84 - 89
  • [6] A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation
    Mohammed Ali Abdelnaby
    Mustafa Arafa
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [7] Transfer-Learning-Aided Optimization for a Low-Frequency Wideband MEMS Energy Harvester
    Abouzarkhanifard, Aylar
    Chimeh, Hamidreza Ehsani
    Al Janaideh, Mohammad
    Zou, Ting
    Zhang, Lihong
    2022 IEEE SENSORS, 2022,
  • [8] A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation
    Abdelnaby, Mohammed Ali
    Arafa, Mustafa
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (10)
  • [9] Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting
    Zhang, Jinhui
    Lin, Maoyu
    Zhou, Wei
    Luo, Tao
    Qin, Lifeng
    MICROMACHINES, 2021, 12 (03)
  • [10] A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials
    Wang, Xiaole
    Xu, Jiajie
    Ding, Jingjing
    Zhao, Chunyu
    Huang, Zhenyu
    SMART MATERIALS AND STRUCTURES, 2019, 28 (02)