Nanophotonic integration in state-of-the-art CMOS foundries

被引:101
|
作者
Orcutt, Jason S. [1 ,2 ]
Khilo, Anatol [1 ]
Holzwarth, Charles W. [1 ]
Popovic, Milos A. [1 ]
Li, Hanqing [2 ]
Sun, Jie [1 ]
Bonifield, Thomas [3 ]
Hollingsworth, Randy [3 ]
Kaertner, Franz X. [1 ]
Smith, Henry I. [1 ]
Stojanovic, Vladimir [1 ,2 ]
Ram, Rajeev J. [1 ,2 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[3] Texas Instruments Inc, Dallas, TX 75243 USA
来源
OPTICS EXPRESS | 2011年 / 19卷 / 03期
基金
美国国家科学基金会;
关键词
ADD-DROP FILTERS; SILICON WAVE-GUIDES; MICRORING RESONATORS; GRATING COUPLER; ELECTROOPTIC MODULATOR; OPTICAL INTERCONNECTS; PHOTONIC WIRES; SOI MOSFETS; MU-M; FABRICATION;
D O I
10.1364/OE.19.002335
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF(2) post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongside high-density, high-performance transistors at low initial and incremental cost. We demonstrate this platform by presenting grating-coupled, microring-resonator filter banks fabricated in an unmodified 28 nm bulk-CMOS process by sharing a mask set with standard electronic projects. The lithographic fidelity of this process enables the high-throughput fabrication of second-order, wavelength-division-multiplexing (WDM) filter banks that achieve low insertion loss without post-fabrication trimming. (C)2010 Optical Society of America
引用
收藏
页码:2335 / 2346
页数:12
相关论文
共 50 条
  • [21] Wideband and multiband CMOS LNAs: State-of-the-art and future prospects
    Arshad, S.
    Zafar, F.
    Ramzan, R.
    Wahab, Q.
    MICROELECTRONICS JOURNAL, 2013, 44 (09) : 774 - 786
  • [22] The state-of-the-art of silicon-on-sapphire CMOS RF switches
    Kelly, D
    Brindle, C
    Kemerling, C
    Stuber, M
    2005 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST, 2005, : 200 - 203
  • [23] Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices
    Chen, Zhiming
    MICROMACHINES, 2024, 15 (03)
  • [24] Advanced strain engineering for state-of-the-art nanoscale CMOS technology
    Yang Bin
    Cai Ming
    SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (05) : 946 - 958
  • [25] State-of-the-art products require state-of-the-art weathering
    Riedl, Andreas
    Coating International, 2015, 48 (11): : 15 - 21
  • [26] Low Frequency Noise Performance of State-of-the-art and Emerging CMOS Devices
    Claeys, C.
    Aoulaiche, M.
    Andrade, M. G. C.
    Rodrigues, M.
    Martino, J. A.
    Simoen, E.
    DIELECTRICS FOR NANOSYSTEMS 5: MATERIALS SCIENCE, PROCESSING, RELIABILITY, AND MANUFACTURING -AND-TUTORIALS IN NANOTECHNOLOGY: MORE THAN MOORE - BEYOND CMOS EMERGING MATERIALS AND DEVICES, 2012, 45 (03): : 567 - 580
  • [28] Enabling wireless communications with state-of-the-art RF CMOS and SiGeBiCMOS technologies
    Chu, S. F.
    Chew, K. W.
    Verma, P. R.
    Ng, C. H.
    Cheng, C. H.
    Toledo, N. G.
    Yoo, Y. K.
    Loh, W. B.
    Leong, K. C.
    Zhang, S. Q.
    Oon, B. G.
    Poh, Y. W.
    Zhou, T.
    Khu, K. K.
    Lim, S. F.
    2005 IEEE INTERNATIONAL WORKSHOP ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY, PROCEEDINGS: INTEGRATED CIRCUITS FOR WIDEBAND COMMUNICATION AND WIRELESS SENSOR NETWORKS, 2005, : 115 - 118
  • [29] ALVAS: state-of-the-art PC-based bridge integration
    不详
    NAVAL ARCHITECT, 2006, : 31 - 31
  • [30] STATE-OF-THE-ART
    YOUNG, WA
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 1995, 153 (06) : 815 - 815