Numerical simulation based on POD for two-dimensional solute transport problems

被引:34
作者
Li, Huanrong [2 ]
Luo, Zhendong [1 ]
Chen, Jing [3 ]
机构
[1] N China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
[3] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Proper orthogonal decomposition; Finite element methods; Numerical simulation; Solute transport problems; PROPER ORTHOGONAL DECOMPOSITION; REDUCED-ORDER APPROACH; COHERENT STRUCTURES; DYNAMICS; EQUATION;
D O I
10.1016/j.apm.2010.11.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A proper orthogonal decomposition (POD) method is applied to a usual finite element scheme for two-dimensional solute transport problems such that it is reduced into a reduced finite element formulation with lower dimensions and high enough accuracy. Numerical examples show that the results of numerical computations are consistent with accurate solutions. Moreover, this validates the feasibility and efficiency of POD method. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2489 / 2498
页数:10
相关论文
共 28 条
[1]  
ADAMS R, 1975, SOBOLEV SPACE
[2]   Proper orthogonal decomposition for time-dependent lid-driven cavity flows [J].
Ahlman, D ;
Jackson, J ;
Kurdila, A ;
Shyy, W .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2002, 42 (04) :285-306
[3]   THE DYNAMICS OF COHERENT STRUCTURES IN THE WALL REGION OF A TURBULENT BOUNDARY-LAYER [J].
AUBRY, N ;
HOLMES, P ;
LUMLEY, JL ;
STONE, E .
JOURNAL OF FLUID MECHANICS, 1988, 192 :115-173
[4]   A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition [J].
Cao, Yanhua ;
Zhu, Jiang ;
Navon, I. M. ;
Luo, Zhendong .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (10) :1571-1583
[5]   Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition [J].
Cao, Yanhua ;
Zhu, Jiang ;
Luo, Zhendong ;
Navon, I. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) :1373-1386
[6]  
CROMMELIN DT, 2004, J ATMOS SCI, V61, P2306
[7]  
Fukunaga K., 1990, INTRO STAT RECOGNITI
[8]   Comparison with solution of convection-diffusion by several difference schemes [J].
He, WP ;
Feng, GL ;
Dong, WJ ;
Li, JP .
ACTA PHYSICA SINICA, 2004, 53 (10) :3258-3264
[9]  
HOLLIFFE IT, 2002, PRINCIPAL COMPONENT
[10]  
Holmes P., 1996, Turbulence, coherent structures, dynamical systems and symmetry