An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding

被引:32
作者
Barbieri, R [1 ]
Wilson, MA
Frank, LM
Brown, EN
机构
[1] Massachusetts Gen Hosp, Dept Anesthesia & Crit Care, Neurosci Stat Res Lab, Boston, MA 02114 USA
[2] MIT, Ctr Learning & Memory, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[4] Univ Calif San Francisco, Dept Physiol, Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA
[5] Harvard Univ, MIT, Sch Med, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
Bayesian algorithms; CA1 place cells; decoding algorithms; point process;
D O I
10.1109/TNSRE.2005.847368
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neural spike train decoding algorithms are important tools for characterizing how ensembles of neurons represent biological signals. We present a Bayesian neural spike train decoding algorithm based on a point process model of individual neurons, a linear stochastic state-space model of the biological signal, and a temporal latency parameter. The latency parameter represents the temporal lead or lag between the biological signal and the ensemble spiking activity. We use the algorithm to study Whether the representation of position by the ensemble spiking activity of pyramidal neurons in the CA1 region of the rat hippocampus is more consistent with prospective coding, i.e., future position, or retrospective coding, past position. Using 44 simultaneously recorded neurons and an ensemble delay latency of 400 ms, the median decoding error was 5.1 cm during 10 min of foraging in an open circular environment. The true coverage probability for the algorithm's 0.95 confidence regions was 0.71. These results illustrate how the Bayesian neural spike train decoding paradigm may be used to investigate spatio-temporal representations of position by an ensemble of hippocampal neurons.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 32 条
  • [1] Dynamic analyses of information encoding in neural ensembles
    Barbieri, R
    Frank, LM
    Nguyen, DP
    Quirk, MC
    Solo, V
    Wilson, MA
    Brown, EN
    [J]. NEURAL COMPUTATION, 2004, 16 (02) : 277 - 307
  • [2] Construction and analysis of non-Poisson stimulus-response models of neural spiking activity
    Barbieri, R
    Quirk, MC
    Frank, LM
    Wilson, MA
    Brown, EN
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2001, 105 (01) : 25 - 37
  • [3] READING A NEURAL CODE
    BIALEK, W
    RIEKE, F
    VANSTEVENINCK, RRD
    WARLAND, D
    [J]. SCIENCE, 1991, 252 (5014) : 1854 - 1857
  • [4] Born M, 1989, PRINCIPLES OPTICS
  • [5] Box G.E. P., 1994, Time Series Analysis: Forecasting Control, V3rd
  • [6] Recursive Bayesian decoding of motor cortical signals by particle filtering
    Brockwell, AE
    Rojas, AL
    Kass, RE
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2004, 91 (04) : 1899 - 1907
  • [7] Multiple neural spike train data analysis: state-of-the-art and future challenges
    Brown, EN
    Kass, RE
    Mitra, PP
    [J]. NATURE NEUROSCIENCE, 2004, 7 (05) : 456 - 461
  • [8] Brown EN, 2004, MATH COMP BIOL SER, P253
  • [9] An analysis of neural receptive field plasticity by point process adaptive filtering
    Brown, EN
    Nguyen, DP
    Frank, LM
    Wilson, MA
    Solo, V
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) : 12261 - 12266
  • [10] Brown EN, 1998, J NEUROSCI, V18, P7411