Site-selective glycosylation of proteins: creating synthetic glycoproteins

被引:62
作者
Van Kasteren, Sander I. [1 ]
Kramer, Holger B. [1 ]
Gamblin, David P. [1 ]
Davis, Benjamin G. [1 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nprot.2007.430
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). Glycosylation is by far the most diverse of the PTM processes. Natural protein production methods typically produce PTM or glycoform mixtures within which function is difficult to dissect or control. Chemical tagging methods allow the precise attachment of multiple glycosylation modifications to bacterially expressed (bare) protein scaffolds, allowing reconstitution of functionally effective mimics of glycoproteins in higher organisms. In this way combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. This protocol describes the modification of Cys residues in proteins using glycomethanethiosulfonates and glycoselenenylsulfides and the modification of azidohomoalanine residues, introduced by Met replacement using auxotrophic Met(-) Escherichia coli strains, with glycoalkynes and the combination of these techniques for the creation of dual-tagged proteins. Each glycosylation procedure outlined in this protocol can be achieved in half a day.
引用
收藏
页码:3185 / 3194
页数:10
相关论文
共 50 条
[1]  
BERNARDES GJ, 2007, NAT PROTOC, DOI DOI 10.1038/NPROT.2007.439
[2]   The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation [J].
Bernardes, Goncalo J. L. ;
Gamblin, David P. ;
Davis, Benjamin G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (24) :4007-4011
[3]   Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris:: production of complex humanized glycoproteins with terminal galactose [J].
Bobrowicz, P ;
Davidson, RC ;
Li, HJ ;
Potgieter, TI ;
Nett, JH ;
Hamilton, SR ;
Stadheim, TA ;
Miele, RG ;
Bobrowicz, B ;
Mitchell, T ;
Rausch, S ;
Renfer, E ;
Wildt, S .
GLYCOBIOLOGY, 2004, 14 (09) :757-766
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Polytriazoles as copper(I)-stabilizing ligands in catalysis [J].
Chan, TR ;
Hilgraf, R ;
Sharpless, KB ;
Fokin, VV .
ORGANIC LETTERS, 2004, 6 (17) :2853-2855
[6]  
Davis B. G, 2007, PROTEIN ENG
[7]   Glycomethanethiosulfonates: powerful reagents for protein glycosylation [J].
Davis, BG ;
Maughan, MAT ;
Green, MP ;
Ullman, A ;
Jones, JB .
TETRAHEDRON-ASYMMETRY, 2000, 11 (01) :245-262
[8]   Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach [J].
Davis, BG ;
Lloyd, RC ;
Jones, JB .
JOURNAL OF ORGANIC CHEMISTRY, 1998, 63 (26) :9614-9615
[9]   Synthesis of glycoproteins [J].
Davis, BG .
CHEMICAL REVIEWS, 2002, 102 (02) :579-601
[10]   Controlled site-selective protein glycosylation for precise glycan structure-catalytic activity relationships [J].
Davis, BG ;
Lloyd, RC ;
Jones, JB .
BIOORGANIC & MEDICINAL CHEMISTRY, 2000, 8 (07) :1527-1535