Ni0.31Co0.69S2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor

被引:57
|
作者
Li, Guilin [1 ]
Huo, Huanhuan [1 ]
Xu, Cailing [1 ]
机构
[1] Lanzhou Univ, Key Lab Special Funct Mat & Struct Design, State Key Lab Appl Organ Chem, Coll Chem & Chem Engn,Minist Educ, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; COMPOSITE ELECTRODE; HYDROGEN-PEROXIDE; NANOCOMPOSITE; SUPERCAPACITOR; BIOSENSOR; EFFICIENT; GRAPHITE; FOAM;
D O I
10.1039/c4ta06553k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni0.31Co0.69S2 nanoparticle/reduced graphene oxide (Ni0.31Co0.69S2/rGO) composites have been synthesized via hydrothermal method, and then applied as the active materials for a high-performance non-enzymatic glucose sensor. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of the as-prepared samples. The results revealed that the abundant nanoparticles with the size of about 150 nm uniformly anchored on the reduced graphene oxide nanosheets, which are interconnected to form a porous graphene framework. The subsequent electrochemical measurements and kinetic analysis showed that the Ni0.31Co0.69S2/rGO composites possessed excellent electrocatalytic activity to glucose oxidation with a low detection limit of 0.078 mu M and wide linear ranges of 0.001-5 mM and 5-16 mM. Moreover, the sensitivities for two linear ranges are 1753 mu A mM(-1) cm(-2) and 954.7 mu A mM(-1) cm(-2), respectively. In addition, the favorable selectivity, long-term stability and superior practical application were also obtained. All these results indicate that the Ni0.31Co0.69S2/rGO composites are a promising active material for non-enzymatic glucose sensors.
引用
收藏
页码:4922 / 4930
页数:9
相关论文
共 42 条
  • [41] Optimized synthetic route for reduced graphene oxide-decorated Cu0.33Co0.67Se2 nanorods on Ni foam integrated with N, S co-doped porous carbon to design high-performance hybrid supercapacitor electrodes
    Qu, Xiaoxiao
    Jeon, Sangheon
    Jeong, Jeonghwa
    Kang, Weiwei
    Xing, Baolin
    Zhang, Chuanxiang
    Hong, Suck Won
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 966
  • [42] High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application
    Wang, Shiyue
    Zhang, Xiaohua
    Huang, Junlin
    Chen, Jinhua
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2018, 410 (07) : 2019 - 2029