In situ crystallization kinetics of two-dimensional MoS2

被引:34
作者
Vila, Rafael A. [1 ,2 ]
Rao, Rahul [1 ,2 ]
Muratore, Christopher [3 ]
Bianco, Elisabeth [1 ,4 ]
Robinson, Joshua A. [5 ,6 ]
Maruyama, Benji [1 ]
Glavin, Nicholas R. [1 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[2] UES Inc, Dayton, OH 45432 USA
[3] Univ Dayton, Dept Chem & Mat Engn, Dayton, OH 45409 USA
[4] Rice Univ, Dept Mat Sci & Engn, Houston, TX 77005 USA
[5] Penn State Univ, Dept Mat Sci & Engn, Ctr & Layered Mat 2D, State Coll, PA 16801 USA
[6] Penn State Univ, Crystal Consortium 2D, State Coll, PA 16801 USA
来源
2D MATERIALS | 2018年 / 5卷 / 01期
基金
美国国家科学基金会;
关键词
2D materials; kinetics; in situ spectroscopy; TRANSITION-METAL DICHALCOGENIDES; LARGE-AREA; CARBON NANOTUBES; PHASE-CHANGE; GROWTH; FILMS; EVOLUTION; LAYERS;
D O I
10.1088/2053-1583/aa9674
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing effective strategies to synthesize 2D materials such as molybdenum disulfide (MoS2) necessitates a fundamental understanding of the thermodynamics and kinetics controlling the nucleation and growth processes. Studying crystallization kinetics of MoS2 with conventional synthesis methods, such as chemical vapor deposition, is challenging because there is a complex set of thermally-activated events happening simultaneously. By combining high-throughput experimentation with in situ Raman spectroscopy we show that the migration-limited crystallization kinetics of MoS2 can be directly observed. During isothermal heating we find that nucleation of MoS2 happens rapidly and that the crystallization rate follows an Arrhenius temperature relationship, yielding an energy barrier of 1.03 eV/atom. The relationship between temperature, crystal quality, and layer orientation is determined with transmission electron microscopy and Raman spectroscopy, revealing that elevated crystallization temperatures improve crystal quality and reduce defect formation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Al Balushi ZY, 2016, NAT MATER, V15, P1166, DOI [10.1038/NMAT4742, 10.1038/nmat4742]
  • [2] [Anonymous], 1937, B ACAD SCI USSR MATH
  • [3] Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III
    Avrami, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) : 177 - 184
  • [4] Kinetics of phase change I - General theory
    Avrami, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) : 1103 - 1112
  • [5] Avrami M., 1940, J Chem Phys, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
  • [6] COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS
    BETHUNE, DS
    KIANG, CH
    DEVRIES, MS
    GORMAN, G
    SAVOY, R
    VAZQUEZ, J
    BEYERS, R
    [J]. NATURE, 1993, 363 (6430) : 605 - 607
  • [7] Growth and Tunable Surface Wettability of Vertical MoS2 Layers for Improved Hydrogen Evolution Reactions
    Bhimanapati, Ganesh R.
    Hankins, Trevor
    Lei, Yu
    Vila, Rafael A.
    Fuller, Ian
    Terrones, Mauricio
    Robinson, Joshua A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) : 22190 - 22195
  • [8] Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
    Bonaccorso, Francesco
    Colombo, Luigi
    Yu, Guihua
    Stoller, Meryl
    Tozzini, Valentina
    Ferrari, Andrea C.
    Ruoff, Rodney S.
    Pellegrini, Vittorio
    [J]. SCIENCE, 2015, 347 (6217)
  • [9] SYNTHESIS AND CHARACTERIZATION OF CARBIDE NANORODS
    DAI, HJ
    WONG, EW
    LU, YZ
    FAN, SS
    LIEBER, CM
    [J]. NATURE, 1995, 375 (6534) : 769 - 772
  • [10] QUANTUM STATES OF CONFINED CARRIERS IN VERY THIN ALXGA1-XAS-GAAS-ALXGA1-XAS HETEROSTRUCTURES
    DINGLE, R
    WIEGMANN, W
    HENRY, CH
    [J]. PHYSICAL REVIEW LETTERS, 1974, 33 (14) : 827 - 830