Convergence to global equilibrium for a kinetic fermion model

被引:8
作者
Neumann, L
Schmeiser, C
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[2] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[3] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
kinetic equations; fermions; Fermi-Dirac distribution; semiconductors; H-theorem; relative entropy; entropy dissipation; long-time asymptotics;
D O I
10.1137/S0036141003436533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time asymptotics of a kinetic model for fermions in a box with periodic boundary conditions. An entropy dissipation approach is used to prove decay to the global equilibrium for this nonlinear equation, that lacks dissipation in the position variable. We prove convergence at an algebraic rate depending on the smoothness of the solution. The result relies on some initial bounds and a uniform boundedness assumption for spatial derivatives of the solution.
引用
收藏
页码:1652 / 1663
页数:12
相关论文
共 13 条
[1]   Relative entropies for the Vlasov-Poisson system in bounded domains [J].
Ben Abdallah, N ;
Dolbeault, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10) :867-872
[2]   Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles [J].
Cáceres, MJ ;
Carrillo, JA ;
Goudon, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :969-989
[3]   Energy-transport models for charge carriers involving impact ionization in semiconductors [J].
Choquet, I ;
Degond, P ;
Schmeiser, C .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2003, 32 (02) :99-132
[4]   On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation [J].
Desvillettes, L ;
Villani, C .
INVENTIONES MATHEMATICAE, 2005, 159 (02) :245-316
[5]   CONVERGENCE TO EQUILIBRIUM IN LARGE TIME FOR BOLTZMANN AND BGK EQUATIONS [J].
DESVILLETTES, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 110 (01) :73-91
[6]  
Desvillettes L, 2001, COMMUN PUR APPL MATH, V54, P1, DOI 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO
[7]  
2-Q
[8]   KINETIC-MODELS AND QUANTUM EFFECTS - A MODIFIED BOLTZMANN-EQUATION FOR FERMI-DIRAC PARTICLES [J].
DOLBEAULT, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :101-131
[9]   Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes [J].
Fellner, K ;
Neumann, L ;
Schmeiser, C .
MONATSHEFTE FUR MATHEMATIK, 2004, 141 (04) :289-299
[10]  
Golse F., 1992, Asymptotic Analysis, V6, P135