Chemical interactions between red P and functional groups in NiP3/CNT composite anodes for enhanced sodium storage

被引:56
作者
Ihsan-Ul-Haq, Muhammad [1 ]
Huang, He [1 ]
Cui, Jiang [1 ]
Yao, Shanshan [1 ]
Wu, Junxiong [1 ]
Chong, Woon Gie [1 ]
Huang, Baoling [1 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Hong Kong, Peoples R China
关键词
LITHIUM-ION; NEGATIVE ELECTRODE; BLACK PHOSPHORUS; CARBON NANOTUBES; FACILE SYNTHESIS; PERFORMANCE; PHOSPHIDE; NA; BATTERY; HYBRID;
D O I
10.1039/c8ta06841k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Red phosphorus has thus far the highest theoretical capacity among all known anode materials for sodium ion batteries (SIBs). However, its low electronic conductivity and large volume expansion during cycles cause rapid capacity fading, leading to poor electrochemical stability. Herein, we report a facile and scalable ball milling approach to synthesize NiP3/carbon nanotube (CNT) composites consisting of NiP3 particles chemically bonded with functionalized CNTs. The conductive CNTs play an important role in stabilizing the composite electrode through an enhanced Na+ diffusion coefficient by two orders of magnitude and six-fold reduction in its charge transfer resistance. The NiP3/CNT composite anode delivers a high initial reversible capacity of 853 mA h g(-1) with more than 80% capacity retention after 120 cycles at 200 mA g(-1) and an excellent high-rate capacity of 363.8 mA h g(-1) after 200 cycles at 1600 mA g(-1). The density functional theory (DFT) calculations combined with ab initio molecular dynamics (AIMD) simulations elucidate strong chemical interactions between the red P in NiP3 and the functional groups on CNTs to form P-C and P-O-C bonds by ball milling for the first time. The facile synthesis strategy devised in this study can be applied to other alloy-based composites with relatively low carbon content for use as high performance anodes for SIBs.
引用
收藏
页码:20184 / 20194
页数:11
相关论文
共 63 条
[1]   Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces [J].
Adden, Nina ;
Gamble, Lara J. ;
Castner, David G. ;
Hoffmann, Andrea ;
Gross, Gerhard ;
Menzel, Henning .
LANGMUIR, 2006, 22 (19) :8197-8204
[2]   Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting [J].
Ahn, Sung Hoon ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) :2496-2503
[3]   Highly Efficient Bienzyme Functionalized Nanocomposite-Based Microfluidics Biosensor Platform for Biomedical Application [J].
Ali, Md Azahar ;
Srivastava, Saurabh ;
Solanki, Pratima R. ;
Reddy, Venu ;
Agrawal, Ved V. ;
Kim, CheolGi ;
John, Renu ;
Malhotra, Bansi D. .
SCIENTIFIC REPORTS, 2013, 3
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene-CNT Aerogels for High-Energy Na Hybrid Capacitors [J].
Cui, Jiang ;
Yao, Shanshan ;
Lu, Ziheng ;
Huang, Jian-Qiu ;
Chong, Woon Gie ;
Ciucci, Francesco ;
Kim, Jang-Kyo .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[6]   Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes [J].
Cui, Jiang ;
Yao, Shanshan ;
Huang, Jian-Qiu ;
Qin, Lei ;
Chong, Woon Gie ;
Sadighi, Zoya ;
Huang, Jiaqiang ;
Wang, Zhenyu ;
Kim, Jang-Kyo .
ENERGY STORAGE MATERIALS, 2017, 9 :85-95
[7]   Recent progress in rational design of anode materials for high-performance Na-ion batteries [J].
Cui, Jiang ;
Yao, Shanshan ;
Kim, Jang-Kyo .
ENERGY STORAGE MATERIALS, 2017, 7 :64-114
[8]   Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries [J].
Cui, Jiang ;
Xu, Zheng-Long ;
Yao, Shanshan ;
Huang, Jiaqiang ;
Huang, Jian-Qiu ;
Abouali, Sara ;
Garakani, Mohammad Akbari ;
Ning, Xiaohui ;
Kim, Jang-Kyo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) :10964-10973
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]  
Evgenii M. P., 1961, RUSS CHEM REV, V30, P362