Resistive wall mode control code maturity: progress and specific examples

被引:62
|
作者
Liu, Yueqiang [1 ]
Chu, M. S. [2 ]
Guo, W. F. [3 ]
Villone, F. [4 ]
Albanese, R. [5 ]
Ambrosino, G. [4 ]
Baruzzo, M. [6 ]
Bolzonella, T. [6 ]
Chapman, I. T. [1 ]
Garofalo, A. M. [2 ]
Gimblett, C. G. [1 ]
Hastie, R. J. [1 ]
Hender, T. C. [1 ]
Jackson, G. L. [2 ]
La Haye, R. J. [2 ]
Lanctot, M. J. [7 ]
In, Y. [8 ]
Marchiori, G. [6 ]
Okabayashi, M. [9 ]
Paccagnella, R. [6 ]
Palumbo, M. Furno [4 ]
Pironti, A. [4 ]
Reimerdes, H. [7 ]
Rubinacci, G. [5 ]
Soppelsa, A. [6 ]
Strait, E. J. [2 ]
Ventre, S. [4 ]
Yadykin, D. [10 ]
机构
[1] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Chinese Acad Sci, ASIPP Inst Plasma Phys, Hefei 230031, Peoples R China
[4] Univ Cassino, DAEIMI, ENEA CREATE, I-03043 Cassino, FR, Italy
[5] Univ Naples Federico 2, ENEA CREATE, Naples, Italy
[6] Consorzio RFX, I-35127 Padua, Italy
[7] Columbia Univ, New York, NY 10027 USA
[8] FAR TECH Inc, San Diego, CA USA
[9] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[10] Chalmers, Euratom VR Fus Assoc, S-41296 Gothenburg, Sweden
基金
英国工程与自然科学研究理事会;
关键词
FEEDBACK STABILIZATION; MHD STABILITY; TOKAMAKS; PLASMAS;
D O I
10.1088/0741-3335/52/10/104002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Skin effect modifications of the Resistive Wall Mode dynamics in tokamaks
    Villone, Fabio
    Pustovitov, Vladimir D.
    PHYSICS LETTERS A, 2013, 377 (39) : 2780 - 2784
  • [32] Resistive wall mode stabilization by differential rotation in an analytic tokamak
    Ham, C. J.
    Gimblett, C. G.
    Penington, S. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (08)
  • [33] Resistive wall mode in cylindrical plasmas in the presence of surface currents
    Cui, Shaoyan
    Lu, Gaimin
    Iu, Yue L.
    JOURNAL OF PLASMA PHYSICS, 2012, 78 : 501 - 506
  • [34] Linear stability studies including resistive wall effects with the CASTOR/STARWALL code
    Strumberger, E.
    Guenter, S.
    Merkel, P.
    Tichmann, C.
    JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP 2014, 2014, 561
  • [35] Toroidal modeling of interaction between resistive wall mode and plasma flow
    Liu, Yueqiang
    Sun, Youwen
    PHYSICS OF PLASMAS, 2013, 20 (02)
  • [36] Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability
    Shiraishi, J.
    Aiba, N.
    Miyato, N.
    Yagi, M.
    NUCLEAR FUSION, 2014, 54 (08)
  • [37] Resistive wall mode and fishbone mode in ITER steady state scenario: roles of fusion-born alphas and plasma flow
    He, Hongda
    Liu, Yueqiang
    Hao, Guangzhou
    Zhu, Jinxia
    Shen, Yong
    Zheng, Guoyao
    NUCLEAR FUSION, 2024, 64 (09)
  • [38] Toroidal modeling of anisotropic thermal transport and energetic particle effects on stability of resistive plasma resistive wall mode
    Bai, Xue
    Liu, Yueqiang
    Gao, Zhe
    Hao, Guangzhou
    PHYSICS OF PLASMAS, 2020, 27 (07)
  • [39] Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain
    Brennan, D. P.
    Finn, J. M.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [40] Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width
    Liu, Yueqiang
    Chapman, I. T.
    Graves, J. P.
    Hao, G. Z.
    Wang, Z. R.
    Menard, J. E.
    Okabayashi, M.
    Strait, E. J.
    Turnbull, A.
    PHYSICS OF PLASMAS, 2014, 21 (05)