COST AND DIMENSION OF WORDS OF ZERO TOPOLOGICAL ENTROPY

被引:0
|
作者
Cassaigne, Julien [1 ]
Frid, Anna E. [1 ]
Puzynina, Svetlana [2 ,3 ]
Zamboni, Luca Q. [4 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[2] St Petersburg State Univ, 7-9 Univ Skaya Emb, St Petersburg 199034, Russia
[3] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
[4] Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2019年 / 147卷 / 04期
关键词
Symbolic dynamics; Factor complexity; Topological entropy;
D O I
10.24033/bsmf.2794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (factor) complexity of a language L is defined as a function p(L) (n) which counts for each n the number of words in L of length n. We are interested in whether L is contained in a finite product of the form S-k, where S is a language of strictly lower complexity. In this paper, we focus on languages of zero topological entropy, meaning lim sup(n ->infinity) log p(L)(n)/n = 0. We define the alpha-dimension of a language L as the infimum of integer numbers k such that there exists a language S of complexity O(n(alpha)) such that L subset of S-k. We then define the cost c(L) as the infimum of all real numbers alpha for which the alpha-dimension of L is finite. In particular, the above definitions apply to the language of factors of an infinite word. In the paper, we search for connections between the complexity of a language (or an infinite word) and its dimension and cost, and show that they can be rather complicated.
引用
收藏
页码:639 / 660
页数:22
相关论文
共 50 条
  • [1] ZERO SEQUENCE ENTROPY AND ENTROPY DIMENSION
    Qiao, Yixiao
    Zhou, Xiaoyao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (01) : 435 - 448
  • [2] ON HAUSDORFF DIMENSION AND TOPOLOGICAL ENTROPY
    Ma, Dongkui
    Wu, Min
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (03) : 363 - 370
  • [3] On the relation between topological entropy and entropy dimension
    P. S. Saltykov
    Mathematical Notes, 2009, 86 : 255 - 263
  • [4] On the Relation between Topological Entropy and Entropy Dimension
    Saltykov, P. S.
    MATHEMATICAL NOTES, 2009, 86 (1-2) : 255 - 263
  • [5] Topological entropy dimension for noncompact sets
    Ma, Dongkui
    Kuang, Rui
    Li, Bing
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 303 - 316
  • [6] Dimension and entropy in compact topological groups
    Dikranjan, Dikran
    Sanchis, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 337 - 366
  • [7] ENTROPY DIMENSION OF TOPOLOGICAL DYNAMICAL SYSTEMS
    Dou, Dou
    Huang, Wen
    Park, Kyewon Koh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) : 659 - 680
  • [8] Topological Entropy Dimension and Directional Entropy Dimension for Z2-Subshifts
    Jung, Uijin
    Lee, Jungseob
    Park, Kyewon Koh
    ENTROPY, 2017, 19 (02)
  • [9] Different forms of entropy dimension for zero entropy systems
    Kuang, Rui
    Cheng, Wen-Chiao
    Ma, Dongkui
    Li, Bing
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (02): : 239 - 254
  • [10] MAXIMAL ENTROPY MEASURES IN DIMENSION ZERO
    Huczek, Dawid
    COLLOQUIUM MATHEMATICUM, 2012, 127 (01) : 55 - 66