Novel bio-polymer based membranes for CO2/CH4 separation

被引:6
|
作者
Iulianelli, A. [1 ]
Russo, F. [1 ]
Galiano, F. [1 ]
Manisco, M. [1 ]
Figoli, A. [1 ]
机构
[1] Inst Membrane Technol Natl Res Council Italy CNR, via P Bucci 17-C, I-87036 Arcavacata Di Rende, Italy
关键词
PLA membranes; Biogas; Bio-CH4; CO2; capture; Gas separation; MIXED MATRIX MEMBRANES; CARBON-DIOXIDE; BARRIER PROPERTIES; MOLECULAR-SIEVE; POLYLACTIC ACID; PLA; CELLULOSE; POLYURETHANE; DEGRADATION; MIXTURES;
D O I
10.1016/j.ijggc.2022.103657
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work deals with the utilization of the poly(lactic acid) (PLA) to fabricate biopolymer membranes by phase inversion technique for the treatment of gaseous streams rich in CO2 and CH4. PLA is an excellent biopolymer constituting a viable option to most of the traditional fossil-based polymers, possessing zero environmental impact once exhausted and interesting gas separation properties as membranes. Several parameters of the phase inversion process were studied in order to identify the optimal PLA membrane preparation, as a function of the best performance in terms of ideal CO2/CH4 selectivity, CO2 permeability and membrane degradability. The PLA membranes were fully characterized in terms of morphology, thickness, differential scanning calorimetry, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy analyses. Afterwards, single gas permeation tests were performed in order to prove the relevance of PLA membranes in CO2/CH4 separation, and membrane degradation tests under water as well. The results of the wide experimental campaign on PLA membranes preparation evidenced how specific membrane samples (thickness > 25 mu m) possess quite high CO2/CH4 ideal selectivity (between 220 and 230) and CO2 permeability similar to 11 Barrer at ambient temperature, which allowed to collocate this biopolymer based membrane material above the correspondent Robeson's upper bound.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure
    Jahan, Zaib
    Niazi, Muhammad Bilal Khan
    Hagg, May-Britt
    Gregersen, Oyvind Weiby
    JOURNAL OF MEMBRANE SCIENCE, 2018, 554 : 275 - 281
  • [32] Highly efficient of CO2/CH4 separation performance via the pebax membranes with multi-functional polymer nanotubes
    Sun, Yanyong
    Gou, Minmin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 342
  • [33] Polymer-Nanoclay Mixed Matrix Membranes for CO2/CH4 Separation: A Review
    Jamil, Asif
    Ching, Oh Pei
    Shariff, Azmi B. M.
    PROCESS AND ADVANCED MATERIALS ENGINEERING, 2014, 625 : 690 - 695
  • [34] Breakthrough analysis of the CO2/CH4 separation on electrospun carbon nanofibers
    Selmert, Victor
    Kretzschmar, Ansgar
    Kungl, Hans
    Tempel, Hermann
    Eichel, Ruediger-A.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2024, 30 (1): : 107 - 119
  • [35] Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO2/CH4
    Rozaini, Muhamad Tahriri
    Grekov, Denys I.
    Bustam, Mohamad Azmi
    Pre, Pascaline
    MOLECULES, 2024, 29 (09):
  • [36] Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2/CH4 Separation
    Shan, Meixia
    Seoane, Beatriz
    Rozhko, Elena
    Dikhtiarenko, Alla
    Clet, Guillaume
    Kapteijn, Freek
    Gascon, Jorge
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (41) : 14467 - 14470
  • [37] Practical designs of membrane contactors and their performances in CO2/CH4 separation
    Kim, Seong-Joong
    Park, Ahrumi
    Nam, Seung-Eun
    Park, You-In
    Lee, Pyung Soo
    CHEMICAL ENGINEERING SCIENCE, 2016, 155 : 239 - 247
  • [38] Mixed Matrix Membranes Based on MFI Zeolite Nanosheets with Tunable Thickness for CO2/CH4 and H2/CH4 Separation
    Feng, Chao
    Ma, Yulei
    Liu, Jinyu
    Tang, Bo
    Ma, Xiaohua
    Liu, Jie
    Jiang, Wenju
    Yang, Lin
    Yao, Lu
    Dai, Zhongde
    Zou, Changwu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (29) : 12916 - 12926
  • [39] Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation
    Saqib, Sidra
    Rafiq, Sikander
    Muhammad, Nawshad
    Khan, Asim Laeeq
    Mukhtar, Ahmad
    Mellon, Nurhayati Binti
    Man, Zakaria
    Nawaz, Mian Hasnain
    Jamil, Farrukh
    Ahmad, Nasir M.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 73
  • [40] Decoupling the effect of membrane thickness and CNC concentration in PVA based nanocomposite membranes for CO2/CH4 separation
    Jahan, Zaib
    Niazi, Muhammad Bilal Khan
    Hagg, May-Britt
    Gregersen, Oyvind Weiby
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 204 : 220 - 225