Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [42] A semiparametric approach for item response function estimation to detect item misfit
    Koehler, Carmen
    Robitzsch, Alexander
    Faehrmann, Katharina
    von Davier, Matthias
    Hartig, Johannes
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2021, 74 : 157 - 175
  • [43] Prediction of global ionospheric TEC using the semiparametric kernel estimation method
    Wang XiJiang
    Bian ShaoFeng
    Li ZiShen
    Jiang Ke
    Ren QingYang
    Pan Xiong
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (04): : 1271 - 1281
  • [44] Sieve estimation in semiparametric modeling of longitudinal data with informative observation times
    Zhao, Xingqiu
    Deng, Shirong
    Liu, Li
    Liu, Lei
    BIOSTATISTICS, 2014, 15 (01) : 140 - 153
  • [46] Semiparametric estimation of the single-index varying-coefficient model
    Zhao, Yang
    Xue, Liugen
    Feng, Sanying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4311 - 4326
  • [47] Estimation method for mixed-effect coefficient semiparametric regression model
    Pan Jian-min
    Journal of Zhejiang University-SCIENCE A, 2000, 1 (1): : 71 - 77
  • [48] Maximum smoothed likelihood estimation for a class of semiparametric Pareto mixture densities
    Huang, Mian
    Wang, Shaoli
    Wang, Hansheng
    Jin, Tian
    STATISTICS AND ITS INTERFACE, 2018, 11 (01) : 31 - 40
  • [49] Finite sample properties for the semiparametric estimation of the intercept of a censored regression model
    Schafgans, MMA
    STATISTICA NEERLANDICA, 2004, 58 (01) : 35 - 56
  • [50] On Semiparametric Clutter Estimation for Ship Detection in Synthetic Aperture Radar Images
    Cui, Yi
    Yang, Jian
    Yamaguchi, Yoshio
    Singh, Gulab
    Park, Sang-Eun
    Kobayashi, Hirokazu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 3170 - 3180