Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [31] Efficient estimation of a semiparametric partially linear varying coefficient model
    Ahmad, I
    Leelahanon, S
    Li, Q
    ANNALS OF STATISTICS, 2005, 33 (01) : 258 - 283
  • [32] SEMIPARAMETRIC ESTIMATION OF NON-IGNORABLE MISSINGNESS WITH REFRESHMENT SAMPLE
    Zheng, Jianfei
    Wang, Jing
    Xue, Lan
    Beigene, Annie Qu
    STATISTICA SINICA, 2025, 35 (01) : 131 - 150
  • [33] Semiparametric estimation for partially linear models with ψ-weak dependent errors
    Eunju Hwang
    Dong Wan Shin
    Journal of the Korean Statistical Society, 2011, 40 : 411 - 424
  • [34] Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas
    Xue, Lingzhou
    Zou, Hui
    STATISTICS AND ITS INTERFACE, 2014, 7 (02) : 201 - 209
  • [35] ON THE EXISTENCE OF AN UPPER CRITICAL DIMENSION FOR SYSTEMS WITHIN THE KPZ UNIVERSALITY CLASS
    Rodrigues, Evandro A.
    Oliveira, Fernando A.
    Mello, Bernardo A.
    ACTA PHYSICA POLONICA B, 2015, 46 (06): : 1231 - 1237
  • [36] Corrections to reaction-diffusion dynamics above the upper critical dimension
    Hofmann, Johannes
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [37] Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension
    Gupta, Abhimanyu
    Robinson, Peter M.
    JOURNAL OF ECONOMETRICS, 2018, 202 (01) : 92 - 107
  • [38] Semiparametric Estimation of a Censored Regression Model Subject to Nonparametric Sample Selection
    Pan, Zhewen
    Zhou, Xianbo
    Zhou, Yahong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 141 - 151
  • [39] Semiparametric estimation of cross-covariance functions for multivariate random fields
    Qadir, Ghulam A.
    Sun, Ying
    BIOMETRICS, 2021, 77 (02) : 547 - 560
  • [40] Minimum Hellinger distance estimation in a two-sample semiparametric model
    Wu, Jingjing
    Karunamuni, Rohana
    Zhang, Biao
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (05) : 1102 - 1122