Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [21] ESTIMATION THEORY OF A CLASS OF SEMIPARAMETRIC REGRESSION-MODELS
    HONG, SY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (06): : 657 - 674
  • [22] Estimation Method in a Semiparametric Regression Model for Longitudinal Data
    Tian Ping
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 769 - 774
  • [23] Nonparametric and semiparametric estimation with sequentially truncated survival data
    Betenksy, Rebecca A.
    Qian, Jing
    Hou, Jingyao
    BIOMETRICS, 2023, 79 (02) : 1000 - 1013
  • [24] Thermal Shock Reliability of Isothermally Aged Doped Lead-Free Solder With Semiparametric Estimation
    Raj, Anto
    Sanders, Thomas
    Sridhar, Sharath
    Evans, John L.
    Bozack, Michael J.
    Johnson, Wayne R.
    Carpenter, D. Mark
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2019, 9 (06): : 1082 - 1093
  • [25] Statistical estimation for heteroscedastic semiparametric regression model with random errors
    Ding, Liwang
    Chen, Ping
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 940 - 969
  • [26] Semiparametric estimation for partially linear models with ψ-weak dependent errors
    Hwang, Eunju
    Shin, Dong Wan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (04) : 411 - 424
  • [27] Semiparametric Estimation of the Distribution of Episodically Consumed Foods Measured With Error
    Lemyre, Felix Camirand
    Carroll, Raymond J.
    Delaigle, Aurore
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 469 - 481
  • [28] Estimation of a semiparametric recursive bivariate probit model in the presence of endogeneity
    Marra, Giampiero
    Radice, Rosalba
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 259 - 279
  • [29] Large sample theory of the estimation of the error distribution for a semiparametric model
    Liang, H
    Härdle, W
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (09) : 2025 - 2036
  • [30] High-precision anomalous dimension of three-dimensional percolation and spatial profile of the critical giant cluster
    Galvani, Alessandro
    Trombettoni, Andrea
    Gori, Giacomo
    PHYSICAL REVIEW E, 2022, 106 (06)