Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [1] Critical dimension in the semiparametric Bernstein-von Mises theorem
    Panov, Maxim E.
    Spokoiny, Vladimir G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 (01) : 232 - 255
  • [2] Critical dimension in the semiparametric Bernstein—von Mises theorem
    Maxim E. Panov
    Vladimir G. Spokoiny
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 232 - 255
  • [3] An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model
    Huang, Ming-Yueh
    Chiang, Chin-Tsang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 1296 - 1310
  • [4] SEMIPARAMETRIC ESTIMATION AND VARIABLE SELECTION FOR SPARSE SINGLE INDEX MODELS IN INCREASING DIMENSION
    Dong, Chaohua
    Tu, Yundong
    ECONOMETRIC THEORY, 2024,
  • [5] On Semiparametric Mode Regression Estimation
    Gannoun, Ali
    Saracco, Jerome
    Yu, Keming
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (07) : 1141 - 1157
  • [6] Semiparametric estimation of conditional copulas
    Abegaz, Fentaw
    Gijbels, Irene
    Veraverbeke, Noel
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 43 - 73
  • [7] Semiparametric estimation with missing covariates
    Bravo, Francesco
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 329 - 346
  • [8] Semiparametric Estimation of Risk Return Relationships
    Escanciano, Juan Carlos
    Carlos Pardo-Fernandez, Juan
    Van Keilegom, Ingrid
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (01) : 40 - 52
  • [9] Semiparametric MEWMA for Phase II profile monitoring
    Nassar, Sara H.
    Abdel-Salam, Abdel-Salam G.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (05) : 1832 - 1846
  • [10] Semiparametric Estimation of Rational Expectation Models
    Yan X.
    Berg M.D.
    Journal of Quantitative Economics, 2006, 4 (1) : 29 - 40