Well-posedness of the water-waves equations

被引:313
作者
Lannes, D
机构
[1] Univ Bordeaux 1, MAB, F-33405 Talence, France
[2] CNRS, UMR 5466, F-33405 Talence, France
关键词
water-waves; Dirichlet-Neumann operator; free surface;
D O I
10.1090/S0894-0347-05-00484-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:605 / 654
页数:50
相关论文
共 39 条
[1]  
[Anonymous], 1991, SAVOIRS ACTUELS
[2]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[3]  
[Anonymous], 1980, Introduction to Pseudodifferential and Fourier Integral Operators, University Series in Mathematics
[4]   GROWTH-RATES FOR THE LINEARIZED MOTION OF FLUID INTERFACES AWAY FROM EQUILIBRIUM [J].
BEALE, JT ;
HOU, TY ;
LOWENGRUB, JS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1269-1301
[5]  
BIRKHOFF G, 1962 P S APPL MATH, V13, P55
[6]  
BONA J, IN PRESS ARCH RATION
[7]   Penalization method for viscous incompressible flow around a porous thin layer [J].
Carbou, G .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (05) :815-855
[8]   POLYNOMIAL-GROWTH ESTIMATES FOR MULTILINEAR SINGULAR INTEGRAL-OPERATORS [J].
CHRIST, M ;
JOURNE, JL .
ACTA MATHEMATICA, 1987, 159 (1-2) :51-80
[9]  
COIFMAN R, 1984, P S PURE MATH, V43, P71
[10]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387