Deep Learning for Privacy in Multimedia

被引:3
|
作者
Cavallaro, Andrea [1 ]
Malekzadeh, Mohammad [1 ]
Shamsabadi, Ali Shahin [1 ]
机构
[1] Queen Mary Univ London, Ctr Intelligent Sensing, London, England
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
基金
英国工程与自然科学研究理事会;
关键词
Privacy; Multimedia; Personal Information; Adversarial Examples; Data Transformations;
D O I
10.1145/3394171.3418551
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss the design and evaluation of machine learning algorithms that provide users with more control on the multimedia information they share. We introduce privacy threats for multimedia data and key features of privacy protection. We cover privacy threats and mitigating actions for images, videos, and motion-sensor data from mobile and wearable devices, and their protection from unwanted, automatic inferences. The tutorial offers theoretical explanations followed by examples with software developed by the presenters and distributed as open source.
引用
收藏
页码:4777 / 4778
页数:2
相关论文
共 50 条
  • [31] Media Gateway: bringing privacy to private multimedia cloud connections
    Daniel Díaz-Sánchez
    Florina Almenarez
    Andrés Marín
    Rosa Sánchez-Guerrero
    Patricia Arias
    Telecommunication Systems, 2014, 55 : 315 - 330
  • [32] Privacy-enhanced multi-party deep learning
    Gong, Maoguo
    Feng, Jialun
    Xie, Yu
    NEURAL NETWORKS, 2020, 121 : 484 - 496
  • [33] De-identification for privacy protection in multimedia content: A survey
    Ribaric, Slobodan
    Ariyaeeinia, Aladdin
    Pavesic, Nikola
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 131 - 151
  • [34] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [35] Adversaries or allies? Privacy and deep learning in big data era
    Liu, Bo
    Ding, Ming
    Zhu, Tianqing
    Xiang, Yong
    Zhou, Wanlei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (19)
  • [36] A comprehensive survey and taxonomy on privacy-preserving deep learning
    Tran, Anh-Tu
    Luong, The-Dung
    Huynh, Van-Nam
    NEUROCOMPUTING, 2024, 576
  • [37] Teaching Privacy: Multimedia Making a Difference
    Bernd, Julia
    Gordo, Blanca
    Choi, Jaeyoung
    Morgan, Bryan
    Henderson, Nicholas
    Egelman, Serge
    Garcia, Daniel D.
    Friedland, Gerald
    IEEE MULTIMEDIA, 2015, 22 (01) : 12 - 19
  • [38] Intelligent Retrieval Method for Multimedia Digital Audio Based on Deep Learning
    Zhang S.
    Lin Y.
    Chen L.
    Jiang C.
    Journal of Engineering Science and Technology Review, 2023, 16 (06) : 195 - 201
  • [39] Privacy-Preserving Deep Learning on Machine Learning as a Service-a Comprehensive Survey
    Tanuwidjaja, Harry Chandra
    Choi, Rakyong
    Baek, Seunggeun
    Kim, Kwangjo
    IEEE ACCESS, 2020, 8 (08): : 167425 - 167447
  • [40] The Cost of Protecting Privacy in Multimedia Applications
    El-Khatib, Khalil
    Q2SWINET'08: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL SYMPOSIUM ON QOS AND SECURITY FOR WIRELESS AND MOBILE NETWORKS, 2008, : 51 - 54