Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.)

被引:96
|
作者
Goel, D. [1 ,2 ]
Singh, A. K. [1 ]
Yadav, V. [1 ]
Babbar, S. B. [2 ]
Bansal, K. C. [1 ]
机构
[1] Indian Agr Res Inst, Natl Res Ctr Plant Biotechnol, New Delhi 110012, India
[2] Univ Delhi, Dept Bot, Delhi 110007, India
关键词
Solanum lycopersicum L; Osmotin; Salt stress; Transformation; Drought stress; YEAST HAL1 GENE; WATER-STRESS; PLANTS; EXPRESSION; PROTEIN; SALINITY; ACCUMULATION; INCREASES; RESPONSES; PROLINE;
D O I
10.1007/s00709-010-0158-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [31] Genetics of tolerance to bacterial wilt disease in tomato (Solanum lycopersicum L.)
    Acharya, Brati
    Ghorai, Ankit Kumar
    Dutta, Subhramalya
    Maurya, Praveen Kumar
    Dutta, Subrata
    Mandal, Asit Kumar
    Chattopadhyay, Arup
    Hazra, Pranab
    AUSTRALASIAN PLANT PATHOLOGY, 2018, 47 (06) : 591 - 600
  • [32] Grafting of tomato (Solanum lycopersicum L.) onto potato (Solanum tuberosum L.) to improve salinity tolerance
    Parthasarathi, Theivasigamani
    Ephrath, Jhonathan E.
    Lazarovitch, Naftali
    SCIENTIA HORTICULTURAE, 2021, 282
  • [33] TOLERANCE OF NATIVE TOMATO (Solanum lycopersicum L.) LINES TO NaCl SALINITY
    Sanjuan Lara, Felipe
    Ramirez Vallejo, Porfirio
    Sanchez Garcia, Prometeo
    Sandoval Villa, Manuel
    Livera Munoz, Manuel
    Carrillo Rodriguez, Jose Cruz
    Segovia, Catarino Perales
    INTERCIENCIA, 2015, 40 (10) : 704 - 709
  • [34] Heritability Analysis for Heat Stress Tolerance in Tomato (Solanum lycopersicum L.)
    Panthee, Dilip
    Kressin, Jonathan
    Piotrowski, Ann
    HORTSCIENCE, 2016, 51 (09) : S191 - S191
  • [35] Heritability Estimates and Gene Effects for Heat-tolerance Traits in Tomato (Solanum lycopersicum L.)
    Chi, Nai-Ning
    Crosby, Kevin
    Rooney, William L.
    HORTSCIENCE, 2017, 52 (09) : S410 - S410
  • [36] Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.)
    Alejandro de la Torre-González
    Eloy Navarro-León
    Begoña Blasco
    Juan M. Ruiz
    Acta Physiologiae Plantarum, 2020, 42
  • [37] Whirly (Why) transcription factors in tomato (Solanum lycopersicum L.): genome-wide identification and transcriptional profiling under drought and salt stresses
    M. Aydın Akbudak
    Ertugrul Filiz
    Molecular Biology Reports, 2019, 46 : 4139 - 4150
  • [38] Whirly (Why) transcription factors in tomato (Solanum lycopersicum L.): genome-wide identification and transcriptional profiling under drought and salt stresses
    Akbudak, M. Aydin
    Filiz, Ertugrul
    MOLECULAR BIOLOGY REPORTS, 2019, 46 (04) : 4139 - 4150
  • [39] DIFFERENTIATION OF SALT STRESS TOLERANCE OF SIX VARIETIES OF TOMATO (SOLANUM LYCOPERSICUM L.) ON THE BASIS OF PHYSIOLOGICAL FACTORS
    Benaich, F.
    Ben Farhat, M.
    Ouni, A.
    Ben Ahmed, H.
    Chalh, A.
    VIE ET MILIEU-LIFE AND ENVIRONMENT, 2019, 69 (04) : 215 - 223
  • [40] Overexpression of PbDHAR2 from Pyrus sinkiangensis in Transgenic Tomato Confers Enhanced Tolerance to Salt and Chilling Stresses
    Qin, An
    Huang, Xiaosan
    Zhang, Huping
    Wu, Juyou
    Yang, Jie
    Zhang, Shaoling
    HORTSCIENCE, 2015, 50 (06) : 789 - 796