W-Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS

被引:29
作者
Al-Rubaye, Hasan [1 ]
Rebeiz, Gabriel M. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
32-nm; amplifier; CMOS; digital predistortion; digital transmitter; direct modulation; error vector magnitude (EVM); filter; mm-wave; QAM; RF digital-to-analog converter (RF-DAC); SOI; transimpedance transmitter (TIA); true single-phase clocked (TSPC); W-band; DIRECT-CONVERSION TRANSMITTER; ERROR VECTOR MAGNITUDE; DIGITAL-RF MODULATOR; DYNAMIC-RANGE; POWER; DAC; PLL; TRANSCEIVER; DESIGN; IMPACT;
D O I
10.1109/JSSC.2017.2723504
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents Gb/s-speed circuit building blocks in 32-nm CMOS SOI, for a >20-Gb/s Cartesian direct-modulation W-band transmitter. Transmitter systems non-idealities and performance limitations are discussed, and circuit design techniques and analyses are presented. The transmitter employs two 2-b high-speed RF digital-to-analog converters driven in quadrature, 20-dB gain W-band LO drivers, and 30-Gb/s high-speed digital retimers and deserializers, and is capable of supporting BPSK/PAM4/QPSK/16-QAM modulation schemes, at a saturated output power P-sat of +4 dBm. A maximum data rate of 20 Gb/s was achieved when operating in QPSK mode, 4 Gb/s in 16-QAM mode, and 12 Gb/s in both BPSK and PAM4 modes. The chip occupies 1.4x0.8 mm(2), and consumes 110 mW in BPSK/PAM4 modes and 220 mW in QPSK and 16-QAM modes, resulting in the state-of-the-art 9-, 11-, and 55-pJ/b peak efficiencies, respectively. A mixer-first wideband W-band receiver that includes a passive mixer and a wideband transimpedance amplifier is also presented. Measurements of the receiver chip demonstrated its capability to downconvert and amplify highly complex modulated waveforms (>256-QAM), and at high data rates, up to 60 Gb/s in 64-QAM, which proves the feasibility of building high dynamicrange mm-wave receivers with bandwidth greater than 30 GHz. The receiver chip was also built in 32-nm CMOS SOI, occupying a core area of 0.18x0.1 mm(2).
引用
收藏
页码:2277 / 2291
页数:15
相关论文
共 41 条
[1]   A Wideband 2x13-bit All-Digital I/Q RF-DAC [J].
Alavi, Morteza S. ;
Staszewski, Robert Bogdan ;
de Vreede, Leo C. N. ;
Long, John R. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (04) :732-752
[2]  
[Anonymous], 2000, 8940014 AG TECHN
[3]  
Chen JS, 2013, ISSCC DIG TECH PAP I, V56, P232, DOI 10.1109/ISSCC.2013.6487713
[4]  
Darabi H., 2015, RADIO FREQUENCY INTE
[5]   A General Method of Empirical Q-matrix Validation [J].
de la Torre, Jimmy ;
Chiu, Chia-Yi .
PSYCHOMETRIKA, 2016, 81 (02) :253-273
[6]   The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks [J].
Dickson, Timothy O. ;
Yau, Kenneth H. K. ;
Chalvatzis, Theodoros ;
Mangan, Alain M. ;
Laskin, Ekaterina ;
Beerkens, Rudy ;
Westergaard, Paul ;
Tazlauanu, Mihai ;
Yang, Ming-Ta ;
Voinigescu, Sorin P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (08) :1830-1845
[7]   A multimode transmitter in 0.13 μm CMOS using direct-digital RF modulator [J].
Eloranta, Petri ;
Seppinen, Pauli ;
Kallioinen, Sarni ;
Saarela, Tuornas ;
Parssinen, Aarno .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (12) :2774-2784
[8]   Semi-analytical computation of error vector magnitude for UMTS SAW filters [J].
Freisleben, S .
2002 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2002, :109-112
[9]   Gain, phase imbalance, and phase noise effects on error vector magnitude [J].
Georgiadis, A .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2004, 53 (02) :443-449
[10]  
Gu Q., 2006, RF SYSTEM DESIGN TRA