Neighborhood union conditions for fractional [a, b]-covered graphs

被引:6
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Neighborhood; Binding number; Fractional k-covered graph; Fractional; a; b]-covered graph; ORTHOGONAL FACTORIZATIONS;
D O I
10.1007/s40840-018-0669-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n. The binding number bind(G) of G is min{vertical bar N-G(X)vertical bar vertical bar X vertical bar vertical bar empty set not equal X subset of V(G) and N-G(X) not equal V(G)}. Throughout this article, some sufficient conditions about neighborhood union and bind(G) for a graph G to be fractional covered are obtained. Moreover, some graphs to verify that the results are best possible in a certain sense are gotten.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 14 条
  • [1] Bondy J.A., 2008, GTM
  • [2] Neighborhood-union condition for an [a, b]-factor avoiding a specified Hamiltonian cycle
    Furuya, Michitaka
    Yashima, Takamasa
    [J]. DISCRETE MATHEMATICS, 2017, 340 (06) : 1419 - 1425
  • [3] Sufficient Condition for the Existence of an Even [a, b]-Factor in Graph
    Kouider, Mekkia
    Ouatiki, Saliha
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1051 - 1057
  • [4] Li YJ, 1998, J GRAPH THEOR, V27, P1, DOI 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO
  • [5] 2-U
  • [6] [Li Zhenping 李珍萍], 2002, [运筹学学报, OR transactions], V6, P65
  • [7] ON (G,F)-COVERED GRAPHS
    LIU, GZ
    [J]. ACTA MATHEMATICA SCIENTIA, 1988, 8 (02) : 181 - 184
  • [8] A degree condition for a graph to have (a, b)-parity factors
    Liu, Haodong
    Lu, Hongliang
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 244 - 252
  • [9] A neighborhood condition for graphs to have [a,b]-factors
    Matsuda, H
    [J]. DISCRETE MATHEMATICS, 2000, 224 (1-3) : 289 - 292
  • [10] Some Existence Theorems on All Fractional (g, f)-factors with Prescribed Properties
    Zhou, Si-zhong
    Zhang, Tao
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02): : 344 - 350