Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

被引:39
|
作者
Bi, Changwei [1 ]
Xu, Yiqing [1 ]
Ye, Qiaolin [1 ]
Yin, Tongming [2 ]
Ye, Ning [1 ]
机构
[1] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Coll Forest Resources & Environm, Nanjing, Jiangsu, Peoples R China
来源
PEERJ | 2016年 / 4卷
基金
中国国家自然科学基金; “十二五”国家科技支撑计划重点项目”;
关键词
Expression; Evolution; Phylogenetic analysis; Willow; Duplication; WRKY protein; TRANSCRIPTION FACTOR GENES; DNA-BINDING; EXPRESSION ANALYSIS; FACTOR SUPERFAMILY; ARABIDOPSIS; RICE; EVOLUTION; PROTEIN; RESISTANCE; DUPLICATION;
D O I
10.7717/peerj.2437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF THE SBP GENE FAMILY IN EUCALYPTUS GRANDIS
    Buyuk, I
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (05): : 6181 - 6193
  • [32] Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris
    Kong, Weilong
    Yang, Shaozong
    Wang, Yulu
    Bendahmane, Mohammed
    Fu, Xiaopeng
    PEERJ, 2017, 5
  • [33] Genome-Wide Evolutionary Characterization and Expression Analyses of WRKY Family Genes in Brachypodium distachyon
    Wen, Feng
    Zhu, Hong
    Li, Peng
    Jiang, Min
    Mao, Wenqing
    Ong, Chermaine
    Chu, Zhaoqing
    DNA RESEARCH, 2014, 21 (03) : 327 - 339
  • [34] Genome-Wide Identification and Analysis of the WRKY Gene Family in the Xerophytic Evergreen Ammopiptanthus nanus
    Hao, Xin
    Wang, Shuyao
    Chen, Yingying
    Qu, Yue
    Yao, Hongjun
    Shen, Yingbai
    AGRONOMY-BASEL, 2020, 10 (11):
  • [35] Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress
    Wu, Weihuang
    Zhu, Sheng
    Xu, Lin
    Zhu, Liming
    Wang, Dandan
    Liu, Yang
    Liu, Siqin
    Hao, Zhaodong
    Lu, Ye
    Yang, Liming
    Shi, Jisen
    Chen, Jinhui
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [36] Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses
    Hu, Wenjing
    Ren, Qiaoyu
    Chen, Yali
    Xu, Guoliang
    Qian, Yexiong
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [37] Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape
    Zhang, Yucheng
    Gao, Min
    Singer, Stacy D.
    Fei, Zhangjun
    Wang, Hua
    Wang, Xiping
    PLOS ONE, 2012, 7 (09):
  • [38] Genome-wide identification and analysis of the IQM gene family in soybean
    Lv, Tianxiao
    Liu, Qiongrui
    Xiao, Hong
    Fan, Tian
    Zhou, Yuping
    Wang, Jinxing
    Tian, Chang-en
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [39] Genome-wide identification of glutamate receptor-like gene family in soybean
    Li, Xinran
    Zhu, Tianhao
    Wang, Xuying
    Zhu, Miao
    HELIYON, 2023, 9 (11)
  • [40] Genome-wide identification and evolutionary analysis of WOX gene family in cucurbit crops
    Li, Chun
    He, Zhen
    Liang, Genyun
    Yang, Nan
    Cai, Peng
    Liang, Ying
    Li, Yuejian
    Fang, Chao
    Liu, Duchen
    Xia, Feng
    Liu, Xiaojun
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2024, 65 (01) : 143 - 156