Beam Allocation based on Deep Learning for Wideband mmWave Massive MIMO

被引:1
作者
Zhang, Pengju [1 ]
Qi, Chenhao [1 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, Nanjing, Peoples R China
来源
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022) | 2022年
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Beam allocation; deep learning; massive MIMO; mmWave communications;
D O I
10.1109/ICC45855.2022.9838974
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Beam allocation is considered for wideband multiuser mmWave massive MIMO systems. By introducing the interference-free achievable rate, the analog precoder and the digital precoder is decoupled for the beam allocation problem. Then the beam allocation is treated as a multi-label classification problem and a deep learning-based beam allocation (DLBA) scheme is proposed, where a convolutional neural network is trained offline using the simulated environments to predict the beam allocation for all the users. In order to avoid the beam conflict and maximize the sum-rate, a rule to avoid the beam conflict is also proposed. Simulation results demonstrate that the DLBA scheme can substantially reduce the computational complexity with a marginal sacrifice of sum-rate performance, compared to the existing schemes.
引用
收藏
页码:913 / 918
页数:6
相关论文
共 12 条
[1]   Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (11) :6481-6494
[2]   Millimeter-Wave Communications: Recent Developments and Challenges of Hardware and Beam Management Algorithms [J].
Bang, Jihoon ;
Chung, Hyeonjin ;
Hong, Junyeol ;
Seo, Hyeongwook ;
Choi, Jaehoon ;
Kim, Sunwoo .
IEEE COMMUNICATIONS MAGAZINE, 2021, 59 (08) :86-92
[3]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[4]   Channel Estimation for Millimeter-Wave Massive MIMO With Hybrid Precoding Over Frequency-Selective Fading Channels [J].
Gao, Zhen ;
Hu, Chen ;
Dai, Linglong ;
Wang, Zhaocheng .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (06) :1259-1262
[5]   Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G [J].
Han, Shuangfeng ;
Chih-Lin, I ;
Xu, Zhikun ;
Rowell, Corbett .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (01) :186-194
[6]   Deep Neural Networks for Linear Sum Assignment Problems [J].
Lee, Mengyuan ;
Xiong, Yuanhao ;
Yu, Guanding ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (06) :962-965
[7]   Sparse Channel Estimation and Hybrid Precoding Using Deep Learning for Millimeter Wave Massive MIMO [J].
Ma, Wenyan ;
Qi, Chenhao ;
Zhang, Zaichen ;
Cheng, Julian .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (05) :2838-2849
[8]   Acquisition of channel state information for mmWave massive MIMO: traditional and machine learning-based approaches [J].
Qi, Chenhao ;
Dong, Peihao ;
Ma, Wenyan ;
Zhang, Hua ;
Zhang, Zaichen ;
Li, Geoffrey Ye .
SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (08)
[9]   Frequency-Domain Compressive Channel Estimation for Frequency-Selective Hybrid Millimeter Wave MIMO Systems [J].
Rodriguez-Fernandez, Javier ;
Gonzalez-Prelcic, Nuria ;
Venugopal, Kiran ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (05) :2946-2960
[10]   Construction of a Generalized DFT Codebook Using Channel-Adaptive Parameters [J].
Suh, Junyeub ;
Kim, Changhyeon ;
Sung, Wonjin ;
So, Jaewoo ;
Heo, Seo Weon .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (01) :196-199