Mechanism of the enhancing effect of glycyrrhizin on nifedipine penetration through a lipid membrane

被引:20
作者
Kim, A., V [1 ,2 ]
Shelepova, E. A. [1 ]
Evseenko, V., I [3 ]
Dushkin, A., V [3 ]
Medvedev, N. N. [1 ,2 ]
Polyakov, N. E. [1 ,3 ]
机构
[1] Inst Chem Kinet & Combust, Inst Skaya St, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Inst Solid State Chem & Mechanochem, Novosibirsk, Russia
关键词
Drug delivery; Membrane penetration; Lipid bilayer; Nifedipine; Glycyrrhizin; DOPC; Molecular dynamics; NMR; PAMPA; DELIVERY-SYSTEM; DRUG; PERMEABILITY; ACID; COMPLEX; OLIGOSACCHARIDES; BIOAVAILABILITY; CAROTENOIDS; SIMVASTATIN; SIMULATION;
D O I
10.1016/j.molliq.2021.117759
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The saponin glycyrrhizin from liquorice root shows the ability to enhance the therapeutic activity of other drugs when used as a drug delivery system. Due to its amphiphilic properties, glycyrrhizin can form self-associates (dimers, micelles) and supramolecular complexes with a wide range of hydrophobic drugs, which leads to an increase in their solubility, stability and bioavailability. That is why the mechanism of the biological activity of glycyrrhizin is of considerable interest and has been the subject of intensive physical and chemical research in the last decade. Two mechanisms have been proposed to explain the effect of glycyrrhizin on drug bioavailability, namely, the increase in drug solubility in water and enhancement of the membrane permeability. Interest in the membrane-modifying ability of glycyrrhizic acid (GA) is also growing at present due to its recently discovered antiviral activity against SARS-CoV-2 Bailly and Vergoten (2020) [1]. In the present study, the passive permeability of the DOPC lipid membrane for the calcium channel blocker nifedipine was elucidated by parallel artificial membrane permeability assay (PAMPA) and full atomistic molecular dynamics (MD) simulation with free energy calculations. PAMPA experiments show a remarkable increase in the amount of nifedipine (NF) permeated with glycyrrhizin compared to free NF. In previous studies, we have shown using MD techniques that glycyrrhizin molecules can integrate into the lipid bilayer. In this study, MD simulation demonstrates a significant decrease in the energy barrier of NF penetration through the lipid bilayer in the presence of glycyrrhizin both in the pure DOPC membrane and in the membrane with cholesterol. This effect can be explained by the formation of hydrogen bonds between NF and GA in the middle of the bilayer. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides [J].
Apanasenko, Irina E. ;
Selyutina, Olga Yu. ;
Polyakov, Nikolay E. ;
Suntsova, Lyubov P. ;
Meteleva, Elizaveta S. ;
Dushkin, Alexander V. ;
Vachali, Preejith ;
Bernstein, Paul S. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 572 :58-65
[2]   Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? [J].
Bailly, Christian ;
Vergoten, Gerard .
PHARMACOLOGY & THERAPEUTICS, 2020, 214
[3]   Predicting a Drug's Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data [J].
Bennion, Brian J. ;
Be, Nicholas A. ;
McNerney, M. Windy ;
Lao, Victoria ;
Carlson, Emma M. ;
Valdez, Carlos A. ;
Malfatti, Michael A. ;
Enright, Heather A. ;
Nguyen, Tuan H. ;
Lightstone, Felice C. ;
Carpenter, Timothy S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (20) :5228-5237
[4]   Drug permeability profiling using cell-free permeation tools: Overview and applications [J].
Berben, Philippe ;
Bauer-Brandl, Annette ;
Brandl, Martin ;
Faller, Bernard ;
Flaten, Goril Eide ;
Jacobsen, Ann-Christin ;
Brouwers, Joachim ;
Augustijns, Patrick .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 119 :219-233
[5]  
Berendsen H.J., 1981, INTERMOLECULAR FORCE, P331, DOI DOI 10.1007/978-94-015-7658-1_21
[6]   PAMPA -: a drug absorption in vitro model 7.: Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones [J].
Bermejo, M ;
Avdeef, A ;
Ruiz, A ;
Nalda, R ;
Ruell, JA ;
Tsinman, O ;
González, I ;
Fernández, C ;
Sánchez, G ;
Garrigues, TM ;
Merino, V .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 21 (04) :429-441
[7]   A mass spectrometry study of the self-association of glycyrrhetinic acid molecules [J].
Borisenko, S. N. ;
Lekar', A. V. ;
Vetrova, E. V. ;
Filonova, O. V. ;
Borisenko, N. I. .
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2016, 42 (07) :716-720
[8]  
Borisenko S. N., 2013, CHEM PLANT MAT, V2, P85, DOI DOI 10.14258/jcprm.1321085
[9]   Unassisted Transport of N-Acetyl-L-tryptophanamide through Membrane: Experiment and Simulation of Kinetics [J].
Cardenas, Alfredo E. ;
Jas, Gouri S. ;
DeLeon, Kristine Y. ;
Hegefeld, Wendy A. ;
Kuczera, Krzysztof ;
Elber, Ron .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (09) :2739-2750
[10]   A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations [J].
Carpenter, Timothy S. ;
Kirshner, Daniel A. ;
Lau, Edmond Y. ;
Wong, Sergio E. ;
Nilmeier, Jerome P. ;
Lightstone, Felice C. .
BIOPHYSICAL JOURNAL, 2014, 107 (03) :630-641