Non-collision periodic solutions of prescribed energy problem for a class of singular Hamiltonian systems

被引:11
作者
Adachi, S [1 ]
机构
[1] Shizuoka Univ, Fac Engn, Div Appl Sci, Shizuoka 4328561, Japan
关键词
singular Hamiltonian system; periodic solution; minimax theory;
D O I
10.12775/TMNA.2005.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of non-collision periodic solutions with prescribed energy for the following singular Hamiltonian systems: {(q) double overdot +del V(q)=0 {1/2 vertical bar(q) over dot vertical bar(2) + V(q)=H In particular for the potential V(q) similar to -1/dist (q, D)(alpha), where the singular set D is a non-empty compact subset of R-N, we prove the existence of a non-collision periodic solution for all H > 0 and alpha is an element of (0,2).
引用
收藏
页码:275 / 296
页数:22
相关论文
共 50 条
[21]   Periodic solutions of a class of non-autonomous second-order discrete Hamiltonian systems [J].
He, Huiting ;
Liu, Chungen ;
Zuo, Jiabin .
AIMS MATHEMATICS, 2023, 9 (02) :3303-3319
[22]   Periodic solutions of a class of non-autonomous second-order discrete Hamiltonian systems [J].
He, Huiting ;
Liu, Chungen ;
Zuo, Jiabin .
AIMS MATHEMATICS, 2024, 9 (02) :3303-3319
[23]   Periodic solutions of Hamiltonian systems [J].
Ding, YH ;
Lee, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) :555-571
[24]   Multiple periodic solutions with prescribed minimal period to second-order Hamiltonian systems [J].
Precup, Radu .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (03) :424-438
[25]   Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems [J].
Tang, CL ;
Wu, XP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) :870-882
[26]   Multiple periodic solutions for a class of non-autonomous hamiltonian systems with even-typed potentials [J].
Tian, Yu ;
Ge, Weigao .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (03) :339-354
[27]   Multiple periodic solutions for a class of non-autonomous hamiltonian systems with even-typed potentials [J].
Yu Tian ;
Weigao Ge .
Journal of Dynamical and Control Systems, 2012, 18 :339-354
[28]   On periodic solutions of superquadratic Hamiltonian systems [J].
Fei, Guihua .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
[29]   Families of periodic solutions to Hamiltonian systems: Nonsymmetrical periodic solutions for a planar restricted three-body problem [J].
B. B. Kreisman .
Cosmic Research, 2005, 43 :84-106
[30]   Families of periodic solutions to Hamiltonian systems: Nonsymmetrical periodic solutions for a planar restricted three-body problem [J].
Kreisman, BB .
COSMIC RESEARCH, 2005, 43 (02) :84-106