A novel multi-level population hybrid search evolution algorithm for constrained multi-objective optimization problems

被引:0
|
作者
Li, Chaoqun [1 ]
Liu, Yang [1 ]
Zhang, Yao [2 ]
Xu, Mengying [3 ]
Xiao, Jing [1 ]
Zhou, Jie [1 ]
机构
[1] Shihezi Univ, Coll Informat Sci & Technol, Shihezi 832000, Peoples R China
[2] Univ Cordilleras, Baguio 2600, Philippines
[3] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Constrained multi-objective optimization; Multi-level hybrid search; Population fusion degree; Detection reset strategy; Evolutionary algorithm; NONDOMINATED SORTING APPROACH; GENETIC LOCAL SEARCH; HANDLING METHOD; PERFORMANCE; DESIGN; CONSTRUCTION; FORMULATION; MOEA/D;
D O I
10.1016/j.jksuci.2022.08.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constrained multi-objective optimization problem (CMOP) considers the convergence, diversity and feasibility of the population in the optimization process, so it is challenging to find desirable solutions of CMOP. Existing evolutionary multi-objective optimization algorithms have good performance on unconstrained multi-objective optimization problems, but have difficulties in solving CMOPs in discrete feasible regions. Aiming at this issue, this paper proposes a novel multi-level population hybrid search evolution algorithm (MLHSEA). First, a new multi-level hybrid search strategy (i.e. MHSS) is designed in the algorithm, which divides the population into three-level subpopulations based on Pareto ranks, constraint violation degree values, and feasible thresholds. Each subpopulation has its own unique evolution strategy to maximize the evolutionary potential of each subpopulation, which is beneficial to make some feasible solutions break through the discrete feasible region and reach the Pareto frontier. Then, a new population fusion degree strategy (i.e. PFDS) is proposed to timely perform population fusion and information exchange according to the population fusion degree (PFD) of each sub-population, thus improving the searchability of the target space. Finally, a novel detection reset strategy (i.e. DRS) is proposed for the lowest inferior subpopulation. This strategy can make inferior subpopulations avoid unnecessary evolutionary iterations and improve population diversity. Based on constrained test suites with four different characteristics, the experimental results show that the proposed MLHSEA outperforms other state-of-the-art constrained multi-objective optimization algorithms in performance.
引用
收藏
页码:9071 / 9087
页数:17
相关论文
共 50 条
  • [21] A multi-preference-based constrained multi-objective optimization algorithm
    Feng, Xue
    Ren, Zhengyun
    Pan, Anqi
    Hong, Juchen
    Tong, Yinghao
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [22] A multi-objective tabu search algorithm for constrained optimisation problems
    Jaeggi, D
    Parks, G
    Kipouros, T
    Clarkson, J
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 490 - 504
  • [23] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [24] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [25] A Constrained Multi-Objective Optimization Algorithm with a Population State Discrimination Model
    Zhao, Shaoyu
    Jia, Heming
    Li, Yongchao
    Shi, Qian
    MATHEMATICS, 2025, 13 (05)
  • [26] An Improved Differential Evolution for Constrained Multi-objective Optimization Problems
    Song, Erping
    Li, Hecheng
    Wanma, Cuo
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 269 - 273
  • [27] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Alaa Tharwat
    Essam H. Houssein
    Mohammed M. Ahmed
    Aboul Ella Hassanien
    Thomas Gabel
    Applied Intelligence, 2018, 48 : 2268 - 2283
  • [28] Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems
    Gao, Liang
    Zhou, Yinzhi
    Li, Xinyu
    Pan, Quanke
    Yi, Wenchao
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (14) : 5976 - 5987
  • [29] Novel multi-objective optimization algorithm
    Zeng, Jie
    Nie, Wei
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (04) : 697 - 710
  • [30] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262