EQUILIBRIUM STATES AND ZERO TEMPERATURE LIMIT ON TOPOLOGICALLY TRANSITIVE COUNTABLE MARKOV SHIFTS
被引:12
|
作者:
Freire, Ricardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, BrazilUniv Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
Freire, Ricardo
[1
]
Vargas, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
Antonio Narino Univ, Fac Educ, Cl 22 Sur 12D-81, Bogota, ColombiaUniv Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
Vargas, Victor
[1
,2
]
机构:
[1] Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
[2] Antonio Narino Univ, Fac Educ, Cl 22 Sur 12D-81, Bogota, Colombia
Equilibrium states;
Gibbs measures;
summable potentials;
Markov shifts;
zero temperature limit;
GIBBS MEASURES;
ALPHABET SUBSHIFTS;
FINITE-TYPE;
PRESSURE;
D O I:
10.1090/tran/7291
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Consider a topologically transitive countable Markov shift and, let f be a summable potential with bounded variation and finite Gurevic pressure. We prove that there exists an equilibrium state mu(tf) for each t > 1 and that there exists accumulation points for the family (mu(tf))(t>1) as t -> infinity. We also prove that the Kolmogorov-Sinai entropy is continuous at infinity with respect to the parameter t, that is, lim(t -> 8) h(mu(tf)) = h((mu infinity)), where mu(infinity) is an accumulation point of the family (mu(tf)) t>1. These results do not depend on the existence of Gibbs measures and, therefore, they extend results of [Israel J. Math. 125 (2001), pp. 93-130] and [Ergodic Theory Dynam. Systems 19 (1999), pp. 1565-1593] for the existence of equilibrium states without the big images and preimages (BIP) property, [J. Stat. Phys. 119 (2005), pp. 765-776] for the existence of accumulation points in this case and, finally, we extend completely the result of [J. Stat. Phys. 126 (2007), pp. 315-324] for the entropy zero temperature limit beyond the finitely primitive case.
机构:
IPICYT, Div Control & Sistemas Dinam, Camino Presa San Jose 2055,Lomas 4a Secc, San Luis Potosi, San Luis Potosi, MexicoUniv Catolica Norte, Dept Matemat, Ave Angamos 0610, Antofagasta, Chile
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-9150900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-9150900 Porto Alegre, RS, Brazil
Baraviera, A. T.
Leplaideur, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brest, Dept Math, F-29238 Brest 3, FranceUniv Fed Rio Grande do Sul, Inst Matemat, BR-9150900 Porto Alegre, RS, Brazil
Leplaideur, R.
Lopes, A. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-9150900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-9150900 Porto Alegre, RS, Brazil