EQUILIBRIUM STATES AND ZERO TEMPERATURE LIMIT ON TOPOLOGICALLY TRANSITIVE COUNTABLE MARKOV SHIFTS

被引:12
|
作者
Freire, Ricardo [1 ]
Vargas, Victor [1 ,2 ]
机构
[1] Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
[2] Antonio Narino Univ, Fac Educ, Cl 22 Sur 12D-81, Bogota, Colombia
基金
巴西圣保罗研究基金会;
关键词
Equilibrium states; Gibbs measures; summable potentials; Markov shifts; zero temperature limit; GIBBS MEASURES; ALPHABET SUBSHIFTS; FINITE-TYPE; PRESSURE;
D O I
10.1090/tran/7291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a topologically transitive countable Markov shift and, let f be a summable potential with bounded variation and finite Gurevic pressure. We prove that there exists an equilibrium state mu(tf) for each t > 1 and that there exists accumulation points for the family (mu(tf))(t>1) as t -> infinity. We also prove that the Kolmogorov-Sinai entropy is continuous at infinity with respect to the parameter t, that is, lim(t -> 8) h(mu(tf)) = h((mu infinity)), where mu(infinity) is an accumulation point of the family (mu(tf)) t>1. These results do not depend on the existence of Gibbs measures and, therefore, they extend results of [Israel J. Math. 125 (2001), pp. 93-130] and [Ergodic Theory Dynam. Systems 19 (1999), pp. 1565-1593] for the existence of equilibrium states without the big images and preimages (BIP) property, [J. Stat. Phys. 119 (2005), pp. 765-776] for the existence of accumulation points in this case and, finally, we extend completely the result of [J. Stat. Phys. 126 (2007), pp. 315-324] for the entropy zero temperature limit beyond the finitely primitive case.
引用
收藏
页码:8451 / 8465
页数:15
相关论文
共 5 条
  • [1] Existence of the zero-temperature limit of equilibrium states on topologically transitive countable Markov shifts
    Beltran, Elmer
    Littin, Jorge
    Maldonado, Cesar
    Vargas, Victor
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (10) : 3231 - 3254
  • [2] Zero Temperature Limits of Gibbs Equilibrium States for Countable Markov Shifts
    Kempton, Tom
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (04) : 795 - 806
  • [3] Zero Temperature Limits for Quotients of Potentials in Countable Markov Shifts
    Pinto, Nicolas
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (05)
  • [4] On the Zero-Temperature Limit of Gibbs States
    Chazottes, Jean-Rene
    Hochman, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) : 265 - 281
  • [5] Selection of Ground States in the Zero Temperature Limit for a One-Parameter Family of Potentials
    Baraviera, A. T.
    Leplaideur, R.
    Lopes, A. O.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01): : 243 - 260