CNN-Based Classification of Degraded Images With Awareness of Degradation Levels

被引:16
|
作者
Endo, Kazuki [1 ,2 ]
Tanaka, Masayuki [1 ,2 ]
Okutomi, Masatoshi [1 ,2 ]
机构
[1] Tokyo Inst Technol, Dept Syst & Control Engn, Tokyo 1528550, Japan
[2] Tokyo Inst Technol, Sch Engn, Tokyo 1528550, Japan
关键词
Degradation; Image restoration; Estimation; Transform coding; Feature extraction; Distortion; Training; Degraded image; classification; convolutional neural network; ensemble; restoration;
D O I
10.1109/TCSVT.2020.3045659
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image classification needs to consider the existence of image degradations in practice. Although degraded images have various levels of degradation, the degradation levels are usually unknown. This paper proposes a convolutional neural network to classify degraded images by using a restoration network and an ensemble learning. The proposed network can automatically infer ensemble weights by using estimated degradation levels of degraded images and features of restored images, where the degradation levels are estimated internally. The proposed network is mainly discussed with JPEG distortion, while degradations of both Gaussian noise and blurring are also examined. We demonstrate that the proposed network can classify degraded images over various levels of degradation. This paper also reveals how the image-quality of training data for a classification network affects the classification performance of degraded images.
引用
收藏
页码:4046 / 4057
页数:12
相关论文
共 50 条
  • [21] Learning CNN-based Features for Retrieval of Food Images
    Ciocca, Gianluigi
    Napoletano, Paolo
    Schettini, Raimondo
    NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017, 2017, 10590 : 426 - 434
  • [22] CNN-based medicinal plant identification and classification using optimized SVM
    Himanshu Kumar Diwedi
    Anuradha Misra
    Amod Kumar Tiwari
    Multimedia Tools and Applications, 2024, 83 : 33823 - 33853
  • [23] CNN-based fault classification considered fault location of vibration signals
    Lee, Jeong Jun
    Cheong, Deok Young
    Min, Tae Hong
    Park, Dong Hee
    Choi, Byeong Keun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (10) : 5021 - 5029
  • [24] A CNN-Based Structure for Performance Degradation Estimation of High-Speed Train Lateral Damper
    Ren, Junxiao
    Jin, Weidong
    Wu, Yunpu
    IEEE ACCESS, 2020, 8 : 198139 - 198151
  • [25] A CNN-Based Mosquito Classification Using Image Transformation of Wingbeat Features
    Alvaro Luna-Gonzalez, Jose
    Robles-Camarillo, Daniel
    Nakano-Miyatake, Mariko
    Lanz-Mendoza, Humberto
    Perez-Meana, Hector
    KNOWLEDGE INNOVATION THROUGH INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_20), 2020, 327 : 127 - 137
  • [26] A CNN-Based Blind Denoising Method for Endoscopic Images
    Zou, Shaofeng
    Long, Mingzhu
    Wang, Xuyang
    Xie, Xiang
    Li, Guolin
    Wang, Zhihua
    2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019), 2019,
  • [27] Classification of anomalies in electroluminescence images of solar PV modules using CNN-based deep learning
    Al-Otum, Hazem Munawer
    SOLAR ENERGY, 2024, 278
  • [28] A CNN-based neuromorphic model for classification and decision control
    Arena, Paolo
    Cali, Marco
    Patane, Luca
    Portera, Agnese
    Spinosa, Angelo G.
    NONLINEAR DYNAMICS, 2019, 95 (03) : 1999 - 2017
  • [29] VMD and CNN-Based Classification Model for Infrasound Signal
    Lu, Quanbo
    Li, Mei
    ARCHIVES OF ACOUSTICS, 2023, 48 (03) : 403 - 412
  • [30] Image Classification with CNN-based Fisher Vector Coding
    Song, Yan
    Hong, Xinhai
    McLoughlin, Ian
    Dai, Lirong
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,