A COHEN-TYPE INEQUALITY FOR FOURIER EXPANSIONS WITH RESPECT TO NON-DISCRETE LAGUERRE-SOBOLEV INNER PRODUCT

被引:1
作者
Fejzullahu, Bujar Xh.
机构
[1] Faculty of Mathematics and Sciences, University of Prishtina, Prishtina, Kosove
关键词
Cohen-type inequality; Laguerre orthogonal polynomials; Laguerre-Sobolev type orthogonal polynomials; Orthogonal expansions; ORTHOGONAL POLYNOMIALS; COHERENT PAIRS; ASYMPTOTICS;
D O I
10.1080/01630563.2010.528571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove a Cohen-type inequality for the Fourier expansion in terms of the orthogonal polynomials associated with the Sobolev type inner product < f, g > = integral(infinity)(0) f(x)g(x)d mu(x) + lambda integral(infinity)(0) f'(x)g'(x)d mu(x) where d mu(x)=x(alpha)e(-alpha)dx with alpha > -1 and lambda > 0.
引用
收藏
页码:1330 / 1341
页数:12
相关论文
共 17 条