Elasticity of fractal materials using the continuum model with non-integer dimensional space

被引:22
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
来源
COMPTES RENDUS MECANIQUE | 2015年 / 343卷 / 01期
关键词
Fractal material; Non-integer dimensional space; Elasticity; Gradient elasticity; Thermoelasticity; Fractional continuum model; FRACTIONAL SCHRODINGER-EQUATION; WAVE-EQUATION; ELECTROMAGNETIC-FIELD; GRADIENT ELASTICITY; MEDIA; MECHANICS; CALCULUS; SOLIDS; MICROSTRUCTURE; REGULARIZATION;
D O I
10.1016/j.crme.2014.09.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:57 / 73
页数:17
相关论文
共 76 条
[1]   ON THE ROLE OF GRADIENTS IN THE LOCALIZATION OF DEFORMATION AND FRACTURE [J].
AIFANTIS, EC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (10) :1279-1299
[2]  
ALTAN BS, 1992, SCRIPTA METALL MATER, V26, P319
[3]  
[Anonymous], 1986, Handbook of British chronology
[4]  
[Anonymous], 2001, ANAL FRACTALS
[5]   Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results [J].
Askes, Harm ;
Aifantis, Elias C. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (13) :1962-1990
[6]   On electromagnetic field in fractional space [J].
Baleanu, Dumitru ;
Golmankhaneh, Alireza K. ;
Golmankhaneh, Ali K. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :288-292
[7]   Quantum mechanics in fractional and other anomalous spacetimes [J].
Calcagni, Gianluca ;
Nardelli, Giuseppe ;
Scalisi, Marco .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
[8]   Numerical modelization of disordered media via fractional calculus [J].
Carpinteri, A ;
Chiaia, B ;
Cornetti, P .
COMPUTATIONAL MATERIALS SCIENCE, 2004, 30 (1-2) :155-162
[9]   A fractal theory for the mechanics of elastic materials [J].
Carpinteri, A ;
Chiaia, B ;
Cornetti, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 365 (1-2) :235-240
[10]   Calculation of the tensile and flexural strength of disordered materials using fractional calculus [J].
Carpinteri, A ;
Cornetti, P ;
Kolwankar, KM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :623-632