A Clinically-Compatible Workflow for Computer-Aided Assessment of Brain Disease Activity in Multiple Sclerosis Patients

被引:12
作者
Combes, Benoit [1 ]
Kerbrat, Anne [1 ,2 ]
Pasquier, Guillaume [3 ]
Commowick, Olivier [1 ]
Le Bon, Brandon [1 ]
Galassi, Francesca [1 ]
L'Hostis, Philippe [4 ]
El Graoui, Nora [1 ,5 ]
Chouteau, Raphael [2 ]
Cordonnier, Emmanuel [3 ]
Edan, Gilles [1 ,2 ]
Ferre, Jean-Christophe [1 ,5 ]
机构
[1] Univ Rennes, INRIA, CNRS, Inserm IRISA UMR 6074,Empenn ERL U1228, Rennes, France
[2] Rennes Univ Hosp, Neurol Dept, Rennes, France
[3] IRT Bcom, Rennes, France
[4] Biotrial, Rennes, France
[5] CHU Rennes, Dept Neuroradiol, Rennes, France
关键词
computer aided diagnosis; radiology; lesion activity; MRI; Multiple Sclerosis; LESIONS; MRI; SUBTRACTION;
D O I
10.3389/fmed.2021.740248
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Over the last 10 years, the number of approved disease modifying drugs acting on the focal inflammatory process in Multiple Sclerosis (MS) has increased from 3 to 10. This wide choice offers the opportunity of a personalized medicine with the objective of no clinical and radiological activity for each patient. This new paradigm requires the optimization of the detection of new FLAIR lesions on longitudinal MRI. In this paper, we describe a complete workflow-that we developed, implemented, deployed, and evaluated-to facilitate the monitoring of new FLAIR lesions on longitudinal MRI of MS patients. This workflow has been designed to be usable by both hospital and private neurologists and radiologists in France. It consists of three main components: (i) a software component that allows for automated and secured anonymization and transfer of MRI data from the clinical Picture Archive and Communication System (PACS) to a processing server (and vice-versa); (ii) a fully automated segmentation core that enables detection of focal longitudinal changes in patients from T1-weighted, T2-weighted and FLAIR brain MRI scans, and (iii) a dedicated web viewer that provides an intuitive visualization of new lesions to radiologists and neurologists. We first present these different components. Then, we evaluate the workflow on 54 pairs of longitudinal MRI scans that were analyzed by 3 experts (1 neuroradiologist, 1 radiologist, and 1 neurologist) with and without the proposed workflow. We show that our workflow provided a valuable aid to clinicians in detecting new MS lesions both in terms of accuracy (mean number of detected lesions per patient and per expert 1.8 without the workflow vs. 2.3 with the workflow, p = 5.10(-4)) and of time dedicated by the experts (mean time difference 2 ' 45 '', p = 10(-4)). This increase in the number of detected lesions has implications in the classification of MS patients as stable or active, even for the most experienced neuroradiologist (mean sensitivity was 0.74 without the workflow and 0.90 with the workflow, p-value for no difference = 0.003). It therefore has potential consequences on the therapeutic management of MS patients.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [2] Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic
    Altay, Ebru Erbayat
    Fisher, Elizabeth
    Jones, Stephen E.
    Hara-Cleaver, Claire
    Lee, Jar-Chi
    Rudick, Richard A.
    [J]. JAMA NEUROLOGY, 2013, 70 (03) : 338 - 344
  • [3] Multiple Sclerosis: Identification of Temporal Changes in Brain Lesions with Computer-Assisted Detection Software
    Bilello, M.
    Arkuszewski, M.
    Nucifora, P.
    Nasrallah, I.
    Melhem, E. R.
    Cirillo, L.
    Krejza, J.
    [J]. NEURORADIOLOGY JOURNAL, 2013, 26 (02) : 143 - 150
  • [4] New OFSEP recommendations for MRI assessment of multiple sclerosis patients: Special consideration for gadolinium deposition and frequent acquisitions
    Brisset, Jean-Christophe
    Kremer, Stephane
    Hannoun, Salem
    Bonneville, Fabrice
    Durand-Dubief, Francoise
    Tourdias, Thomas
    Barillot, Christian
    Guttmann, Charles
    Vukusic, Sandra
    Dousset, Vincent
    Cotton, Francois
    [J]. JOURNAL OF NEURORADIOLOGY, 2020, 47 (04) : 250 - 258
  • [5] Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields
    Cabezas, M.
    Corral, J. F.
    Oliver, A.
    Diez, Y.
    Tintore, M.
    Auger, C.
    Montalban, X.
    Llado, X.
    Pareto, D.
    Rovira, A.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (10) : 1816 - 1823
  • [6] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [7] Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
    Commowick, Olivier
    Istace, Audrey
    Kain, Michael
    Laurent, Baptiste
    Leray, Florent
    Simon, Mathieu
    Pop, Sorina Camarasu
    Girard, Pascal
    Ameli, Roxana
    Ferre, Jean-Christophe
    Kerbrat, Anne
    Tourdias, Thomas
    Cervenansky, Frederic
    Glatard, Tristan
    Beaumont, Jeremy
    Doyle, Senan
    Forbes, Florence
    Knight, Jesse
    Khademi, April
    Mahbod, Amirreza
    Wang, Chunliang
    McKinley, Richard
    Wagner, Franca
    Muschelli, John
    Sweeney, Elizabeth
    Roura, Eloy
    Llado, Xavier
    Santos, Michel M.
    Santos, Wellington P.
    Silva-Filho, Abel G.
    Tomas-Fernandez, Xavier
    Urien, Helene
    Bloch, Isabelle
    Valverde, Sergi
    Cabezas, Mariano
    Javier Vera-Olmos, Francisco
    Malpica, Norberto
    Guttmann, Charles
    Vukusic, Sandra
    Edan, Gilles
    Dojat, Michel
    Styner, Martin
    Warfield, Simon K.
    Cotton, Francois
    Barillot, Christian
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Commowick O, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P700, DOI 10.1109/ISBI.2012.6235644
  • [9] PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection
    Dahan, A.
    Pereira, R.
    Malpas, C. B.
    Kalincik, T.
    Gaillard, F.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (10) : 1624 - 1629
  • [10] Longitudinal analysis of white matter and cortical lesions in multiple sclerosis
    Fartaria, Mario Joao
    Kober, Tobias
    Granziera, Cristina
    Cuadra, Meritxell Bach
    [J]. NEUROIMAGE-CLINICAL, 2019, 23