Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solar-Driven Chemical Reactions

被引:119
作者
Bai, Licheng [1 ]
Wang, Xin [1 ]
Tang, Shaobin [2 ,3 ]
Kang, Yihong [1 ]
Wang, Jiahong [1 ]
Yu, Ying [4 ]
Zhou, Zhang-Kai [4 ]
Ma, Chao [5 ]
Zhang, Xue [1 ]
Jiang, Jun [2 ]
Chu, Paul K. [6 ,7 ]
Yu, Xue-Feng [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Biomed Mat & Interfaces, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci,Microscale Collaborat Inn, Hefei 230026, Anhui, Peoples R China
[3] Gannan Normal Univ, Key Lab Organopharmaceut Chem Jiangxi Prov, Ganzhou 341000, Peoples R China
[4] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[5] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[6] City Univ Hong Kong, Dept Phys, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[7] City Univ Hong Kong, Dept Mat Sci & Engn, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
2D materials; black phosphorus; heterostructures; photocatalysis; ultrasmall platinum nanoparticles; OXIDATION; HYDROGENATION; SIZE; PHOTODETECTOR; NANOPARTICLES; MECHANISMS; OXYGEN;
D O I
10.1002/adma.201803641
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 2D black phosphorus/platinum heterostructure (Pt/BP) is developed as a highly efficient photocatalyst for solar-driven chemical reactions. The heterostructure, synthesized by depositing BP nanosheets with ultrasmall (approximate to 1.1 nm) Pt nanoparticles, shows strong Pt-P interactions and excellent stability. The Pt/BP heterostructure exhibits obvious P-type semiconducting characteristics and efficient absorption of solar energy extending into the infrared region. Furthermore, during light illumination, accelerated charge separation is observed from Pt/BP as manifested by the ultrafast electron migration (0.11 ps) detected by a femtosecond pump-probe microscopic optical system as well as efficient electron accumulation on Pt revealed by in situ X-ray photoelectron spectroscopy. These unique properties result in remarkable performance of Pt/BP in typical hydrogenation and oxidation reactions under simulated solar light illumination, and its efficiency is much higher than that of other common Pt catalysts and even much superior to that of conventional thermal catalysis. The 2D Pt/BP heterostructure has enormous potential in photochemical reactions involving solar light and the results of this study provide insights into the design of next-generation high-efficiency photocatalysts.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Explaining the Size Dependence in Platinum-Nanoparticle-Catalyzed Hydrogenation Reactions
    Bai, Licheng
    Wang, Xin
    Chen, Qiang
    Ye, Yifan
    Zheng, Haoquan
    Guo, Jinghua
    Yin, Yadong
    Gao, Chuanbo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (50) : 15656 - 15661
  • [2] In Situ Oxidation Study of Pt(110) and Its Interaction with CO
    Butcher, Derek R.
    Grass, Michael E.
    Zeng, Zhenhua
    Aksoy, Funda
    Bluhm, Hendrik
    Li, Wei-Xue
    Mun, Bongjin S.
    Somorjai, Gabor A.
    Liu, Zhi
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) : 20319 - 20325
  • [3] Ultrafast Charge Separation for Full Solar Spectrum-Activated Photocatalytic H2 Generation in a Black Phosphorus-Au-CdS Heterostructure
    Cai, Xiaoyan
    Mao, Liang
    Yang, Songqiu
    Han, Keli
    Zhang, Junying
    [J]. ACS ENERGY LETTERS, 2018, 3 (04): : 932 - 939
  • [4] High-quality sandwiched black phosphorus heterostructure and its quantum oscillations
    Chen, Xiaolong
    Wu, Yingying
    Wu, Zefei
    Han, Yu
    Xu, Shuigang
    Wang, Lin
    Ye, Weiguang
    Han, Tianyi
    He, Yuheng
    Cai, Yuan
    Wang, Ning
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
  • [6] Ligand-Exchange Assisted Formation of Au/TiO2 Schottky Contact for Visible-Light Photocatalysis
    Ding, Dawei
    Liu, Kai
    He, Shengnan
    Gao, Chuanbo
    Yin, Yadong
    [J]. NANO LETTERS, 2014, 14 (11) : 6731 - 6736
  • [7] Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere
    Doganov, Rostislav A.
    O'Farrell, Eoin C. T.
    Koenig, Steven P.
    Yeo, Yuting
    Ziletti, Angelo
    Carvalho, Alexandra
    Campbell, David K.
    Coker, David F.
    Watanabe, Kenji
    Taniguchi, Takashi
    Castro Neto, Antonio H.
    Ozyilmaz, Barbaros
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging
    Engel, Michael
    Steiner, Mathias
    Avouris, Phaedon
    [J]. NANO LETTERS, 2014, 14 (11) : 6414 - 6417
  • [9] Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents
    Galinska, A
    Walendziewski, J
    [J]. ENERGY & FUELS, 2005, 19 (03) : 1143 - 1147
  • [10] From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics
    Guo, Zhinan
    Zhang, Han
    Lu, Shunbin
    Wang, Zhiteng
    Tang, Siying
    Shao, Jundong
    Sun, Zhengbo
    Xie, Hanhan
    Wang, Huaiyu
    Yu, Xue-Feng
    Chu, Paul K.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (45) : 6996 - 7002