Substrate stress relaxation regulates cell spreading

被引:648
作者
Chaudhuri, Ovijit [1 ,2 ,3 ]
Gu, Luo [1 ,2 ]
Darnell, Max [1 ,2 ]
Klumpers, Darinka [1 ,2 ,4 ]
Bencherif, Sidi A. [1 ,2 ]
Weaver, James C. [2 ]
Huebsch, Nathaniel [1 ,5 ]
Mooney, David J. [1 ,2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[4] Vrije Univ Amsterdam Med Ctr, Res Inst MOVE, Dept Orthoped Surg, NL-1081 HV Amsterdam, Netherlands
[5] Gladstone Inst Cardiovasc Dis, San Francisco, CA 94158 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
EXTRACELLULAR-MATRIX; TRACTION; TISSUE; MECHANOTRANSDUCTION; STIFFNESS; ADHESION; BEHAVIOR; INTERFACE; FORCES; FATE;
D O I
10.1038/ncomms7365
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] Activation of integrin function by nanopatterned adhesive interfaces
    Arnold, M
    Cavalcanti-Adam, EA
    Glass, R
    Blümmel, J
    Eck, W
    Kantlehner, M
    Kessler, H
    Spatz, JP
    [J]. CHEMPHYSCHEM, 2004, 5 (03) : 383 - 388
  • [2] Determinants of Maximal Force Transmission in a Motor-Clutch Model of Cell Traction in a Compliant Microenvironment
    Bangasser, Benjamin L.
    Rosenfeld, Steven S.
    Odde, David J.
    [J]. BIOPHYSICAL JOURNAL, 2013, 105 (03) : 581 - 592
  • [3] REGULAR PYRAMID PUNCH PROBLEM
    BILODEAU, GG
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (03): : 519 - 523
  • [4] The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
    Cameron, Andrew R.
    Frith, Jessica E.
    Cooper-White, Justin J.
    [J]. BIOMATERIALS, 2011, 32 (26) : 5979 - 5993
  • [5] Traction Dynamics of Filopodia on Compliant Substrates
    Chan, Clarence E.
    Odde, David J.
    [J]. SCIENCE, 2008, 322 (5908) : 1687 - 1691
  • [6] Stresses at the cell-to-substrate interface during locomotion of fibroblasts
    Dembo, M
    Wang, YL
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (04) : 2307 - 2316
  • [7] Tissue cells feel and respond to the stiffness of their substrate
    Discher, DE
    Janmey, P
    Wang, YL
    [J]. SCIENCE, 2005, 310 (5751) : 1139 - 1143
  • [8] Balancing forces: architectural control of mechanotransduction
    DuFort, Christopher C.
    Paszek, Matthew J.
    Weaver, Valerie M.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2011, 12 (05) : 308 - 319
  • [9] Role of YAP/TAZ in mechanotransduction
    Dupont, Sirio
    Morsut, Leonardo
    Aragona, Mariaceleste
    Enzo, Elena
    Giulitti, Stefano
    Cordenonsi, Michelangelo
    Zanconato, Francesca
    Le Digabel, Jimmy
    Forcato, Mattia
    Bicciato, Silvio
    Elvassore, Nicola
    Piccolo, Stefano
    [J]. NATURE, 2011, 474 (7350) : 179 - U212
  • [10] Substrate compliance versus ligand density in cell on gel responses
    Engler, A
    Bacakova, L
    Newman, C
    Hategan, A
    Griffin, M
    Discher, D
    [J]. BIOPHYSICAL JOURNAL, 2004, 86 (01) : 617 - 628