Barrier hopping, viscous flow, and kinetic gelation in particle-polymer suspensions

被引:38
作者
Chen, YL
Kobelev, V
Schweizer, KS
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevE.71.041405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The naive mode coupling-polymer reference interaction site model (MCT-PRISM) theory of gelation and elasticity of suspensions of hard sphere colloids or nanoparticles mixed with nonadsorbing polymers has been extended to treat the emergence of barriers, activated transport, and viscous flow. The barrier makes the dominant contribution to the single particle relaxation time and shear viscosity, and is a rich function of the depletion attraction strength via the polymer concentration, polymer-particle size asymmetry ratio, and particle volume fraction. The dependences of the barrier on these three system parameters can be accurately collapsed onto a single scaling variable, and the resultant master curve is well described by a power law. Nearly universal master curves are also constructed for the hopping or alpha relaxation time for system conditions not too close to the ideal MCT transition. Based on the calculated barrier hopping time, a theory for kinetic gel boundaries is proposed. The form and dependence on system parameters of the kinetic gel lines are qualitatively the same as obtained from prior ideal MCT-PRISM studies. The possible relevance of our results to the phenomenon of gravity-driven gel collapse is studied. The general approach can be extended to treat nonlinear viscoelasticity and rheology of polymer-colloid suspensions and gels.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? [J].
Archer, AJ ;
Rauscher, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (40) :9325-9333
[2]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[3]   INTERACTION BETWEEN PARTICLES SUSPENDED IN SOLUTIONS OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF POLYMER SCIENCE, 1958, 33 (126) :183-192
[4]   Nonergodicity transitions in colloidal suspensions with attractive interactions [J].
Bergenholtz, J ;
Fuchs, M .
PHYSICAL REVIEW E, 1999, 59 (05) :5706-5715
[5]   Gelation in model colloid-polymer mixtures [J].
Bergenholtz, J ;
Poon, WCK ;
Fuchs, M .
LANGMUIR, 2003, 19 (10) :4493-4503
[6]   Colloidal gelation and non-ergodicity transitions [J].
Bergenholtz, J ;
Fuchs, M ;
Voigtmann, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (29) :6575-6583
[7]   Gel transitions in colloidal suspensions [J].
Bergenholtz, J ;
Fuchs, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (50) :10171-10182
[8]   Influence of polymer-excluded volume on the phase-behavior of colloid-polymer mixtures [J].
Bolhuis, PG ;
Louis, AA ;
Hansen, JP .
PHYSICAL REVIEW LETTERS, 2002, 89 (12) :1283021-1283024
[9]   THE RHEOLOGY OF CONCENTRATED DISPERSIONS OF WEAKLY ATTRACTING COLLOIDAL PARTICLES WITH AND WITHOUT WALL SLIP [J].
BUSCALL, R ;
MCGOWAN, JI ;
MORTONJONES, AJ .
JOURNAL OF RHEOLOGY, 1993, 37 (04) :621-641
[10]   Microscopic theory of gelation and elasticity in polymer-particle suspensions [J].
Chen, YL ;
Schweizer, KS .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15) :7212-7222