AN EXTRAGRADIENT METHOD FOR VECTOR EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS

被引:12
作者
Iusem, Alfredo N. [1 ]
Mohebbi, Vahid [2 ]
机构
[1] Inst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Texas El Paso, Dept Pharmaceut Sci, 500 W Univ Ave, El Paso, TX 79968 USA
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2021年 / 5卷 / 03期
关键词
Extragradient method; Hadamard manifold; Linesearch; Vector equilibrium problem; Vector valued bifunction; GENERALIZED MONOTONE BIFUNCTIONS; PROXIMAL POINT ALGORITHM; VARIATIONAL-INEQUALITIES; OPTIMIZATION; EXISTENCE;
D O I
10.23952/jnva.5.2021.3.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the vector equilibrium problem in Hadamard manifolds, which extends the scalar equilibrium problem to vector valued bifunctions. We propose an extragradient method for solving this problem. Under suitable assumptions on the bifunction, we prove that the generated sequence converges to a solution of the problem. We also give some examples of Hadamard manifolds and vector equilibrium problems to which our main result can be applied. Finally, we present some numerical experiments.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 50 条
[41]   Interior proximal extragradient method for equilibrium problems [J].
Langenberg, Nils .
OPTIMIZATION, 2015, 64 (10) :2145-2161
[42]   An Existence Result for the Generalized Vector Equilibrium Problem on Hadamard Manifolds [J].
E. E. A. Batista ;
G. C. Bento ;
O. P. Ferreira .
Journal of Optimization Theory and Applications, 2015, 167 :550-557
[43]   The subgradient extragradient method for pseudomonotone equilibrium problems [J].
Dadashi, Vahid ;
Iyiola, Olaniyi S. ;
Shehu, Yekini .
OPTIMIZATION, 2020, 69 (04) :901-923
[44]   An Armijo-Type viscosity algorithm for continuous equilibrium problems without monotonicity on Hadamard manifolds [J].
Yang, Wanning ;
Wang, Lin ;
Ma, Zhaoli ;
Yan, Liang .
NUMERICAL ALGORITHMS, 2025,
[45]   New Tseng's extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds [J].
Khammahawong, Konrawut ;
Kumam, Poom ;
Chaipunya, Parin ;
Plubtieng, Somyot .
FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2021, 2021 (01)
[46]   Modified Tseng's extragradient methods for variational inequality on Hadamard manifolds [J].
Chen, Junfeng ;
Liu, Sanyang ;
Chang, Xiaokai .
APPLICABLE ANALYSIS, 2021, 100 (12) :2627-2640
[47]   A two-step inertial algorithm for solving equilibrium problems on Hadamard manifolds [J].
Bass, H. A. ;
Damu, A. ;
Phane, M. .
CARPATHIAN JOURNAL OF MATHEMATICS, 2025, 41 (02) :253-272
[48]   Korpelevich's method for variational inequality problems on Hadamard manifolds [J].
Tang, Guo-ji ;
Huang, Nan-jing .
JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) :493-509
[49]   Existence results for vector variational inequality problems on Hadamard manifolds [J].
Chen, Sheng-lan .
OPTIMIZATION LETTERS, 2020, 14 (08) :2395-2411
[50]   A parallel viscosity extragradient method for solving a system of pseudomonotone equilibrium problems and fixed point problems in Hadamard spaces [J].
Kazeem Olalekan Aremu ;
Lateef Olakunle Jolaoso ;
Maggie Aphane ;
Olawale Kazeem Oyewole .
Ricerche di Matematica, 2024, 73 :819-840