Determinants of Histone H3K4 Methylation Patterns

被引:139
|
作者
Soares, Luis M. [1 ]
He, P. Cody [1 ]
Chun, Yujin [1 ]
Suh, Hyunsuk [1 ]
Kim, TaeSoo [2 ]
Buratowski, Stephen [1 ]
机构
[1] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Ewha Womans Univ, Dept Life Sci, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
POLYMERASE-II TRANSCRIPTION; C-TERMINAL DOMAIN; SACCHAROMYCES-CEREVISIAE; H2B UBIQUITYLATION; GENE-EXPRESSION; TRIMETHYLATION; COMPASS; GENOME; SET1; PROTEIN;
D O I
10.1016/j.molcel.2017.10.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient'' is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.
引用
收藏
页码:773 / +
页数:19
相关论文
共 50 条
  • [1] Histone H3K4 and H3K36 Methylation Independently Recruit the NuA3 Histone Acetyltransferase in Saccharomyces cerevisiae
    Martin, Benjamin J. E.
    McBurney, Kristina L.
    Maltby, Vicki E.
    Jensen, Kristoffer N.
    Brind'Amour, Julie
    Howe, LeAnn J.
    GENETICS, 2017, 205 (03) : 1113 - 1123
  • [2] H3K4 histone methylation in oral squamous cell carcinoma
    Mancuso, Marta
    Matassa, Danilo Swann
    Conte, Mariachiara
    Colella, Giuseppe
    Rana, Gina
    Fucci, Laura
    Piscopo, Marina
    ACTA BIOCHIMICA POLONICA, 2009, 56 (03) : 405 - 410
  • [3] Regulation of histone H3K4 methylation in brain development and disease
    Shen, Erica
    Shulha, Hennady
    Weng, Zhiping
    Akbarian, Schahram
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1652)
  • [4] H3K4 Methylation in Aging and Metabolism
    Hsu, Chia-Ling
    Lo, Yi-Chen
    Kao, Cheng-Fu
    EPIGENOMES, 2021, 5 (02)
  • [5] Charge-based Interaction Conserved within Histone H3 Lysine 4 (H3K4) Methyltransferase Complexes Is Needed for Protein Stability, Histone Methylation, and Gene Expression
    Mersman, Douglas P.
    Du, Hai-Ning
    Fingerman, Ian M.
    South, Paul F.
    Briggs, Scott D.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (04) : 2652 - 2665
  • [6] Feedback Control of Set1 Protein Levels Is Important for Proper H3K4 Methylation Patterns
    Soares, Luis M.
    Radman-Livaja, Marta
    Lin, Sherry G.
    Rando, Oliver J.
    Buratowski, Stephen
    CELL REPORTS, 2014, 6 (06): : 961 - 972
  • [7] The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex
    Karakkat, Jimsheena V.
    Kaimala, Suneesh
    Sreedharan, Sreejisha P.
    Jayaprakash, Princy
    Adeghate, Ernest A.
    Ansari, Suraiya A.
    Guccione, Ernesto
    Mensah-Brown, Eric P. K.
    Emerald, Bright Starling
    NUCLEIC ACIDS RESEARCH, 2019, 47 (19) : 10086 - 10103
  • [8] Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae
    Maltby, Vicki E.
    Martin, Benjamin J. E.
    Brind'Amour, Julie
    Chruscicki, Adam T.
    McBurney, Kristina L.
    Schulze, Julia M.
    Johnson, Ian J.
    Hills, Mark
    Hentrich, Thomas
    Kobor, Michael S.
    Lorincz, Matthew C.
    Howe, LeAnn J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18505 - 18510
  • [9] Dot1-Dependent Histone H3K79 Methylation Promotes the Formation of Meiotic Double-Strand Breaks in the Absence of Histone H3K4 Methylation in Budding Yeast
    Ismail, Mohammad Bani
    Shinohara, Miki
    Shinohara, Akira
    PLOS ONE, 2014, 9 (05):
  • [10] Roles of H3K4 methylation in biology and disease
    Wang, Hua
    Helin, Kristian
    TRENDS IN CELL BIOLOGY, 2025, 35 (02) : 115 - 128