A kriging-based analysis of cloud liquid water content using CloudSat data

被引:0
作者
Lalande, Jean-Marie [1 ,3 ]
Bourmaud, Guillaume [1 ]
Minvielle, Pierre [2 ]
Giovannelli, Jean-Francois [1 ]
机构
[1] Univ Bordeaux, IMS, CNRS, Bordeaux INP, F-33400 Talence, France
[2] CEA, CESTA, DAM, F-33114 Le Barp, France
[3] Univ Toulouse, CNRM, Meteo France, CNRS, Lannion, France
关键词
AIR-TEMPERATURE; PRECIPITATION; PREDICTION; SPACE;
D O I
10.5194/amt-15-4411-2022
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Spatiotemporal statistical learning has received increased attention in the past decade, due to spatially and temporally indexed data proliferation, especially data collected from satellite remote sensing. In the meantime, observational studies of clouds are recognized as an important step toward improving cloud representation in weather and climate models. Since 2006, the satellite CloudSat of NASA is carrying a 94 GHz cloud-profiling radar and is able to retrieve, from radar reflectivity, microphysical parameter distribution such as water or ice content. The collected data are piled up with the successive satellite orbits of nearly 2 h, leading to a large compressed database of 2 Tb (http://cloudsat.atmos.colostate.edu/, last access: 8 June 2022). These observations offer the opportunity to extend the cloud microphysical properties beyond the actual measurement locations using an interpolation and prediction algorithm. To do so, we introduce a statistical estimator based on the spatiotemporal covariance and mean of the observations known as kriging. An adequate parametric model for the covariance and the mean is chosen from an exploratory data analysis. Beforehand, it is necessary to estimate the parameters of this spatiotemporal model; this is performed in a Bayesian setting. The approach is then applied to a subset of the CloudSat dataset.
引用
收藏
页码:4411 / 4429
页数:19
相关论文
共 43 条
  • [1] [Anonymous], 2003, INTRO MODEL BASED GE, DOI DOI 10.1007/978-0-387-21811-3_2
  • [2] Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature
    Austin, Richard T.
    Heymsfield, Andrew J.
    Stephens, Graeme L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [3] Banerjee S., 2014, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, DOI [DOI 10.1201/B17115, 10.1201/b17115]
  • [4] Evaluation of global precipitation data sets over the Iberian Peninsula
    Belo-Pereira, Margarida
    Dutra, Emanuel
    Viterbo, Pedro
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [5] Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities
    Bodas-Salcedo, A.
    Webb, M. J.
    Brooks, M. E.
    Ringer, M. A.
    Williams, K. D.
    Milton, S. F.
    Wilson, D. R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
  • [6] Brockwell P., 2009, TIME SERIES THEORY M
  • [7] Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models
    Chen, Wei-Ting
    Woods, Christopher P.
    Li, Jui-Lin F.
    Waliser, Duane E.
    Chern, Jiun-Dar
    Tao, Wei-Kuo
    Jiang, Jonathan H.
    Tompkins, Adrian M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [8] Chiles J.P., 1999, WILEY SER PROB STAT
  • [9] Chonavel T., 2002, STAT SIGNAL PROCESSI, DOI [10.1007/978-1-4471-0139-0, DOI 10.1007/978-1-4471-0139-0]
  • [10] CloudSat Data Processing Center, LEV 2B CWC RO CLOUDS