Multi-Objective Optimization in 5G Wireless Networks With Massive MIMO

被引:27
作者
Goudos, Sotirios K. [1 ]
Diamantoulakis, Panagiotis D. [2 ]
Karagiannidis, George K. [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
[2] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
关键词
5C; cellular network; MIMO communications; energy efficiency; optimization techniques;
D O I
10.1109/LCOMM.2018.2868663
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The integration of massive multiple-input multiple-output systems in the fifth generation (5G) of wireless networks requires the simultaneous consideration of several conflicting objectives, in order to achieve optimal performance and operation. In this letter, we present a complete optimization framework, which is based on multi-objective evolutionary algorithms (MOEAs), namely, non-dominated sorting genetic algorithm-II and speed-constrained multi-objective particle swarm optimization. In addition, we use a decision maker for the selection of a solution vector that achieves the best compromise solution. The results illustrate that MOEAs are particularly promising techniques for solving such multi-objective problems in 5G networks.
引用
收藏
页码:2346 / 2349
页数:4
相关论文
共 10 条
[1]   Multiobjective Signal Processing Optimization [The way to balance conflicting metrics in 5G systems] [J].
Bjoernson, Emil ;
Jorswieck, Eduard ;
Debbah, Merouane ;
Ottersten, Bjoern .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (06) :14-23
[2]   Massive MIMO: Ten Myths and One Critical Question [J].
Bjornson, Emil ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (02) :114-123
[3]   Fuzzy multiple criteria decision making: Recent developments [J].
Carlsson, C ;
Fuller, R .
FUZZY SETS AND SYSTEMS, 1996, 78 (02) :139-153
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Fonseca C. M., 2005, TECH REP, P214
[6]  
Hao YY, 2015, 2015 IEEE 26TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P553
[7]   MACHINE LEARNING PARADIGMS FOR NEXT-GENERATION WIRELESS NETWORKS [J].
Jiang, Chunxiao ;
Zhang, Haijun ;
Ren, Yong ;
Han, Zhu ;
Chen, Kwang-Cheng ;
Hanzo, Lajos .
IEEE WIRELESS COMMUNICATIONS, 2017, 24 (02) :98-105
[8]   Survey of multi-objective optimization methods for engineering [J].
Marler, RT ;
Arora, JS .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 26 (06) :369-395
[9]  
Nebro AJ, 2009, MCDM: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING, P66
[10]   Rethinking the Role of Interference in Wireless Networks [J].
Zheng, Gan ;
Krikidis, Ioannis ;
Masouros, Christos ;
Timotheou, Stelios ;
Toumpakaris, Dimitris-Alexandros ;
Ding, Zhiguo .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (11) :152-158